山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (11): 53-58.doi: 10.6040/j.issn.1671-7554.0.2019.1426
洪甲庚1,聂洋洋1,苏国强2
HONG Jiageng1, NIE Yangyang1, SU Guoqiang2
摘要: 目的 探讨丙泊酚对不同分化程度人结肠癌细胞体外增殖、迁移及肿瘤细胞中Wnt1、β-catenin mRNA表达的影响。 方法 选取2株分化程度不同的人结肠癌细胞株Caco-2(高分化)和LoVo(低分化),分别按丙泊酚浓度分为P0(0 μg/mL)、P6.25(6.25 μg/mL)、P25(25 μg/mL)、P100(100 μg/mL)组,CCK-8法检测丙泊酚对Caco-2和LoVo细胞生长增殖的影响,Transwell迁移实验检测丙泊酚对Caco-2和LoVo细胞迁移的影响,比较不同分化程度结肠癌细胞对丙泊酚的敏感性。Real-time PCR检测丙泊酚处理后Caco-2和LoVo细胞中Wnt1和β-catenin基因mRNA的表达。 结果 CCK-8检测结果显示,对于高分化Caco-2细胞,P100组处理24 h与P0组相比细胞存活率差异有统计学意义(P<0.001),P25组处理48 h与P0组相比,差异有统计学意义(P<0.05);对于低分化LoVo细胞,P100组处理24 h与P0组相比,细胞存活率差异有统计学意义(P<0.05),P25组处理48 h与P0组相比,差异有统计学意义(P<0.05)。Transwell迁移实验结果表明,Caco-2细胞系P6.25、P25、P100组与P0组OD570 nm值比较,差异有统计学意义(P<0.001);LoVo细胞系P25、P100组与P0组OD570 nm值比较,差异有统计学意义(P<0.001)。Real-time PCR结果表明,Caco-2细胞系P25、P100组与P0组Wnt1 mRNA表达差异有统计学意义(P<0.05),LoVo细胞系P25、P100组与P0组Wnt1 mRNA表达差异有统计学意义(P<0.001);Caco-2细胞系P25、P100组与P0组β-catenin mRNA表达差异有统计学意义(P<0.001),LoVo细胞系P100组与P0组β-catenin mRNA表达差异有统计学意义(P<0.001)。 结论 丙泊酚呈剂量和时间依赖性抑制人结肠癌细胞Caco-2和LoVo的生长增殖及迁移。Caco-2较LoVo对丙泊酚的抑制作用更敏感。
中图分类号:
[1] Sneyd JR. Recent advances in intravenous anaesthesia[J]. Br J Anaesth, 2004, 93(5): 725-736. [2] Vasileiou I, Xanthos T, Koudouna E, et al. Propofol: a review of its non-anaesthetic effects[J]. Eur J Pharmacol, 2009, 605(1-3): 1-8. [3] Wang J, Cheng CS, Lu Y, et al. Novel findings of anti-cancer property of propofol[J]. Anti-cancer Agents Med Chem, 2018, 18(2): 156-165. [4] Zhang D, Zhou XH, Zhang J, et al. Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer[J]. Biochem Biophys Res Commun, 2015, 468(4): 561-567. [5] Xu YB, Jiang W, Zhao FR, et al. Propofol suppresses invasion and induces apoptosis of osteosarcoma cell in vitro via downregulation of TGF-beta1 expression[J]. Eur Rev Med Pharmacol Sci, 2016, 20(7): 1430-1435. [6] Huang X, Teng Y, Yang H, et al. Propofol inhibits invasion and growth of ovarian cancer cells via regulating miR-9/NF-kappaB signal[J]. Braz J Med Biol Res, 2016, 49(12): e5717. doi:10.1590/1414-431x20165717. [7] Bahrami A, Amerizadeh F, Shahidsales S, et al. Therapeutic potential of targeting wnt/beta-catenin pathway in treatment of colorectal cancer: rational and progress[J]. J Cell Biochem, 2017, 118(8): 1979-1983. [8] Novellasdemunt L, Antas P, Li VS. Targeting wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms[J]. Am J Physiol Cell Physiol, 2015, 309(8): 511-521. [9] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. [10] Lee JW, Shahzad MM, Lin YG, et al. Surgical stress promotes tumor growth in ovarian carcinoma[J]. Clin Cancer Res, 2009, 15(8): 2695-2702. [11] 周荻, 缪长虹. 手术对肿瘤转移的影响以及麻醉对策[J]. 国际麻醉学与复苏杂志, 2013, 34(9): 808-811,815. ZHOU Di, MIAO Changhong. Effect of surgery on cancer recurrence and anaesthetic strategy[J]. International Journal of Anesthesiology and Resuscitation, 2013, 34(9): 808-811, 815. [12] Kim R. Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence[J]. J Transl Med, 2018, 16(1): 8. doi:10.1186/s12967-018-1389-7. [13] Jiang S, Liu Y, Huang L, et al. Effects of propofol on cancer development and chemotherapy: potential mechanisms[J]. Eur J Pharmacol, 2018, 831(15): 46-51. [14] Song J, Shen Y, Zhang J, et al. Mini profile of potential anticancer properties of propofol[J]. PLoS One, 2014, 9(12): e114440. doi: 10.1371/journal.pone.0114440. [15] Gao X, Mi Y, Guo N, et al. The mechanism of propofol in cancer development: an updated review[J]. Asia Pac J Clin Oncol, 2020, 16(2): e3-e11. doi: 10.1111/ajco.13301. [16] Kim R. Anesthetic technique and cancer recurrence in oncologic surgery: unraveling the puzzle[J]. Cancer Metastasis Rev, 2017, 36(1): 159-177. [17] Bajwa SJ, Anand S, Kaur G. Anesthesia and cancer recurrences: the current knowledge and evidence[J]. J Cancer Res Ther, 2015, 11(3): 528-534. [18] Heaney A, Buggy DJ. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis?[J]. Br J Anaesth, 2012, 109(Suppl 1): i17-i28. doi:10.1093/bja/aes421 [19] Xu YB, Du QH, Zhang MY, et al. Propofol suppresses proliferation, invasion and angiogenesis by down-regulating ERK-VEGF/MMP-9 signaling in Eca-109 esophageal squamous cell carcinoma cells[J]. Eur Rev Med Pharmacol Sci, 2013, 17(18): 2486-2494. [20] Peng Z, Zhang Y. Propofol inhibits proliferation and accelerates apoptosis of human gastric cancer cells by regulation of microRNA-451 and MMP-2 expression[J]. Genet Mol Res, 2016, 15(2): gmr7078. doi:10.4238/gmr.15027078. [21] Yufeng Miao, Youwei Zhang, Haijun Wan, et al. GABA-receptor agonist, propofol inhibits invasion of colon carcinoma cells[J]. Biomed Pharmacother, 2010, 64(9): 583-588. [22] 余海燕, 刘德生, 王云. 丙泊酚对结直肠癌细胞生物学行为的影响[J]. 中国病理生理杂志, 2018, 34(2): 245-250. YU Haiyan, LIU Desheng, WAGN Yun. Effects of propofol on biological characteristics of colorectal cancer cells[J]. Chinese Journal of Pathophysiology, 2018, 34(2): 245-250. [23] Tavare AN, Perry NJ, Benzonana LL, et al. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents[J]. Int J Cancer, 2012, 130(6): 1237-1250. [24] Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control[J]. Science, 2014, 346(6205): 1248012. doi: 10.1126/science.1248012. [25] Vijayakumar S, Liu G, Rus IA, et al. High-frequency canonical wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/beta-catenin target gene, CDC25A[J]. Cancer Cell, 2011, 19(5): 601-612. [26] Yang Y, Yang JJ, Tao H, et al. New perspectives on beta-catenin control of cell fate and proliferation in colon cancer[J]. Food Chem Toxicol, 2014, 74:14-19. doi: 10.1016/j.fct.2014.08.013. [27] Laezza C, Dalessandro A, Paladino S, et al. Anandamide inhibits the wnt/β-catenin signaling pathway in human breast cancer MDA MB 231 cells[J]. Eur J cancer, 2012, 48(16): 3112-3122. |
[1] | 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38-46. |
[2] | 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32-37. |
[3] | 刘惠苓,王兴文,冯少滨,冯虹,韩俊庆. B类I型清道夫受体的高表达与结肠癌患者预后的相关性[J]. 山东大学学报(医学版), 2017, 55(10): 84-89. |
[4] | 王贲士, 单军奇,侯庆生,公为鹏,朱振宇,郭洪亮. CD11b+/CD66b-表型髓系细胞在结肠癌进展和肝转移中的作用[J]. 山东大学学报(医学版), 2017, 55(10): 41-45. |
[5] | 陆衡,刘延国,李曙光,陈晓康,田琦,衣翠华,王秀问. YKL-40对卵巢癌SKOV-3细胞迁移能力的影响[J]. 山东大学学报(医学版), 2017, 55(1): 33-38. |
[6] | 马雪,张斌,韩春耀,刘明媛,郝丽静,葛树卿,薛中原. 下调α-catulin基因的表达对舌鳞癌细胞株Tscca侵袭及迁移能力影响的体外研究[J]. 山东大学学报(医学版), 2016, 54(6): 12-15. |
[7] | 郑荟,魏光伟. HIPK2抑制非小细胞肺癌上皮间质转化及迁移侵袭的作用及机制[J]. 山东大学学报(医学版), 2016, 54(11): 7-12. |
[8] | 张雪群,高卫,潘盼,高骏逸. PI3K/AKT及其相关因子在结肠癌中的表达[J]. 山东大学学报(医学版), 2016, 54(1): 52-57. |
[9] | 周静, 常晓天, 周婷, 崔莹莹, 张蓓, 荣风年. 沉默PADI4基因对卵巢癌细胞系OVCAR3的作用[J]. 山东大学学报(医学版), 2015, 53(6): 48-53. |
[10] | 姚众, 陈为亮, 徐洋洋, 何影, 曲迅, 李新钢. 半乳凝素-9抑制胶质瘤细胞增殖及迁移[J]. 山东大学学报(医学版), 2015, 53(4): 1-5. |
[11] | 韩晓, 薛皓, 闫绍峰, 郭兴, 李彤, 郭小凡, 高校, 李刚. miR-584对人胶质母细胞瘤侵袭和迁移能力的影响[J]. 山东大学学报(医学版), 2015, 53(4): 16-21. |
[12] | 高峰, 康白, 杨洪鸣, 赵廷坤, 曲梅花, 王金红. 皮肤T细胞淋巴瘤相关抗原5在肿瘤细胞株中的表达[J]. 山东大学学报(医学版), 2015, 53(3): 41-45. |
[13] | 刘成霞, 李明, 连海峰, 史宁. miRNA-486-5p对结肠癌细胞株SW620生物学行为的影响[J]. 山东大学学报(医学版), 2015, 53(1): 16-20. |
[14] | 王尧, 陈艳红, 陈宏. 结肠癌患者外周血DPYD基因多态性与5-FU敏感性和毒副作用相关性分析[J]. 山东大学学报(医学版), 2014, 52(S1): 18-21. |
[15] | 张艳丽, 刘新风, 张欣, 王海燕, 杨咏梅, 杜鲁涛, 王丽丽, 李培龙, 王传新. 循环miR-128在结直肠癌患者血清中的表达及其对细胞迁移侵袭能力的影响[J]. 山东大学学报(医学版), 2014, 52(8): 57-62. |
|