山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (11): 17-23.doi: 10.6040/j.issn.1671-7554.0.2020.1227
戈宗元*(),贺婉佶,琚烈,姚轩,王璘,黄烨霖,杨志文,熊健皓,包怡宁,李明,张兵,赵昕
Zongyuan GE*(),Wanji HE,Lie JU,Xuan YAO,Lin WANG,Yelin HUANG,Zhiwen YANG,Jianhao XIONG,Yining BAO,Ming LI,Bing ZHANG,Xin ZHAO
摘要:
随着高效的深度神经网络算法、大量高质量医学数据、低成本大规模计算机并行设备的普及,近年来人工智能在眼科领域、院内眼科疾病筛查和院外体检中心都取得了大规模的应用。对某些特定疾病如眼底糖网已经达到甚至超过了大多数全科大夫的水准。在本文中我们以分类、检测、分割、域适应等基础算法为引子,梳理、分析出人工智能在眼科应用中的优势和不足,以便更好地构想未来的研究方向。
中图分类号:
1 | 路寻. 卓越的人工智能科学家——马文·明斯基[J]. 自然辩证法通讯, 2010, 32 (2): 104- 111, 128. |
2 | Govindaiah A, Smith RT, Bhuiyan A. A new and improved method for automated screening of age-related macular degeneration using ensemble deep neural networks[C]. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018: 702-705. |
3 |
Russakoff DB , Lamin A , Oakley JD , et al. Deep learning for prediction of amd progression: A pilot study[J]. Invest Ophthalmol Vis Sci, 2019, 60 (2): 712- 722.
doi: 10.1167/iovs.18-25325 |
4 |
Ting DSW , Cheung CY , Lim G , et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318 (22): 2211- 2223.
doi: 10.1001/jama.2017.18152 |
5 |
Brown JM , Campbell JP , Beers A , et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136 (7): 803- 810.
doi: 10.1001/jamaophthalmol.2018.1934 |
6 | Kesim C , Tas AY , Karslıoglu MZ , et al. Validation results of a deep learning algorithm for detection of diabetic retinopathy with lesion localization from retinal fundus photographs[J]. Invest Ophthalmol Vis Sci, 2020, 62 (7): 1626. |
7 | Lakra A, Tripathi P, Keshari R, et al. Segdensenet: Iris segmentation for pre and post cataract surgery[J/OL]. arXiv, 2018: 1801.10100[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2018arXiv180110100L. |
8 | Dong Y, Zhang Q, Qiao Z, et al. Classification of cataract fundus image based on deep learning[C]. Proceedings of IEEE International Conference on Imaging Systems and Techniques, 2017: 1-5. |
9 |
Varadarajan AV , Poplin R , Blumer K , et al. Deep learning for predicting refractive error from retinal fundus images[J]. Invest Ophthalmol Vis Sci, 2018, 59 (7): 2861- 2868.
doi: 10.1167/iovs.18-23887 |
10 | Yau JW , Rogers SL , Kawasaki R , et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35 (3): 556- 564. |
11 |
Ortiz A , Munilla J , Gorriz JM , et al. Ensembles of deep learning architectures for the early diagnosis of the alzheimer's disease[J]. Int J Neural Syst, 2016, 26 (7): 1650025.
doi: 10.1142/S0129065716500258 |
12 |
Gulshan V , Peng L , Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316 (22): 2402- 2410.
doi: 10.1001/jama.2016.17216 |
13 |
Diaz-Pinto A , Morales S , Naranjo V , et al. Cnns for automatic glaucoma assessment using fundus images: An extensive validation[J]. Biomed Eng Online, 2019, 18 (1): 29.
doi: 10.1186/s12938-019-0649-y |
14 | Wang X, Ju L, Zhao X, et al. Retinal abnormalities recognition using regional multitask learning[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019: 30-38. |
15 | Ruder S. An overview of multi-task learning in deep neural networks[J/OL]. arXiv, 2017: 1706.05098[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2017arXiv170605098R. |
16 | Ravindran S . How artificial intelligence is helping to prevent blindness[J]. Nature, 2019, 568 (7751): 6. |
17 | Nair A , Merkel S , Straub J , et al. Real-time pupil detection for fundus imager using single-shot detector and hard- negative training[J]. Invest Ophthalmol Vis Sci, 2020, 61 (9): PB00110- PB00110. |
18 | Mitra A , Banerjee PS , Roy S , et al. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning[J]. Comput Methods Programs Biomed, 2018, 165 (2018): 25- 35. |
19 | Selvaraju RR, Das A, Vedantam R, et al. Grad-cam: Why did you say that?[J/OL]. arXiv, 2016: 1611.07450.[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2016arXiv161107450S. |
20 | Haloi M. Improved microaneurysm detection using deep neural networks[J/OL]. arXiv, 2015: 1505.04424[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2015arXiv-150504424H. |
21 | Khojasteh P , Passos Junior LA , Carvalho T , et al. Exudate detection in fundus images using deeply-learnable features[J]. Comput Biol Med, 2019, 104 (2019): 62- 69. |
22 | Mitani A , Huang A , Venugopalan S , et al. Detection of anaemia from retinal fundus images via deep learning[J]. Nat Biomed Eng, 2020, 4 (1): 18- 27. |
23 | Quellec G , Lamard M , Conze PH , et al. Automatic detection of multiple pathologies in fundus photographs[J]. Invest Ophthalmol Vis Sci, 2020, 61 (7): 1641- 6141. |
24 |
Fang L , Cunefare D , Wang C , et al. Automatic segmentation of nine retinal layer boundaries in oct images of non-exudative amd patients using deep learning and graph search[J]. Biomed Opt Express, 2017, 8 (5): 2732- 2744.
doi: 10.1364/BOE.8.002732 |
25 |
De Fauw J , Ledsam JR , Romera-Paredes B , et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24 (9): 1342- 1350.
doi: 10.1038/s41591-018-0107-6 |
26 | Ma W, Yu S, Ma K, et al. Multi-task neural networks with spatial activation for retinal vessel segmentation and artery/vein classification[C]. Proceedings of the Medical Image Computing and Computer Assisted Intervention-MICCAI 2019, Cham, F, 2019: 769-778. |
27 | Sevastopolsky A . Optic disc and cup segmentation methods for glaucoma detection with modification of u-net convolutional neural network[J]. Pattern Recog& Ima Anal, 2017, 27 (3): 618- 624. |
28 | Sarhan MH, Albarqouni S, Yigitsoy M, et al. Multi-scale microaneurysms segmentation using embedding triplet loss[C]. Proceedings of the Medical Image Computing and Computer Assisted Intervention-MICCAI 2019, Cham, F, 2019: 174-182. |
29 |
Fu H , Cheng J , Xu Y , et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Trans Med Imaging, 2018, 37 (7): 1597- 1605.
doi: 10.1109/TMI.2018.2791488 |
30 |
Shelhamer E , Long J , Darrell T . Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39 (4): 640- 651.
doi: 10.1109/TPAMI.2016.2572683 |
31 | Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[J/OL]. arXiv, 2015: 1505.04597[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2015arXiv150504597R. |
32 | Chen LC, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[J/OL]. arXiv, 2018: 1802.02611[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2018arXiv180202611C. |
33 | Yan X, Jiang W, Shi Y, et al. Ms-nas: Multi-scale neural architecture search for medical image segmentation[J/OL]. arXiv, 2020: 2007.06151[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2020arXiv200706-151Y. |
34 | Jiang Y, Tan N. Retinal vessel segmentation based on conditional deep convolutional generative adversarial networks[J/OL]. arXiv, 2018: 1805.04224[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2018arXiv180504-224J. |
35 | Redko I, Habrard A, Morvant E, et al. 2 - domain adaptation problem[M]// Redko I, Habrard A, Morvant E, et al. Advances in domain adaptation theory. Amsterdam: Elsevier, 2019: 21-36. |
36 | Ma Y, Lao S, Takikawa E, et al. Discriminant analysis in correlation similarity measure space[C]. Proceedings of the 24th international conference on Machine learning, 2007: 577-584. |
37 |
Bruzzone L , Marconcini M . Domain adaptation problems: A dasvm classification technique and a circular validation strategy[J]. IEEE Trans Pattern Anal Mach Intell, 2010, 32 (5): 770- 787.
doi: 10.1109/TPAMI.2009.57 |
38 | Gheisari M , Baghshah MS . Unsupervised domain adaptation via representation learning and adaptive classifier learning[J]. Neurocomputing, 2015, 165 (OCT.1): 300- 311. |
39 | Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J/OL]. arXiv, 2015: 1503.02531[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2015arXiv150302531H. |
40 |
Borgwardt KM , Gretton A , Rasch MJ , et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22 (14): E49- E57.
doi: 10.1093/bioinformatics/btl242 |
41 | Ghifary M, Bastiaan Kleijn W, Zhang M. Domain adaptive neural networks for object recognition[J/OL]. arXiv, 2014: 1409.6041[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2014ar, Xiv1409.6041G. |
42 | Li Y , Wang N , Shi J , et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80 (2018): 109- 117. |
43 | Gopalan R, Ruonan L, Chellappa R. Domain adaptation for object recognition: An unsupervised approach[C]. International Conference on Computer, 2011: 999-1006. |
44 | Liu M-Y, Tuzel O. Coupled generative adversarial networks[J/OL]. arXiv, 2016: 1606.07536[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2016arXiv1606075-36L. |
45 | Ganin Y, Lempitsky V. Unsupervised domain adaptation by backpropagation[J/OL]. arXiv, 2014: 1409.7495[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2014arXiv1409.7495G. |
46 | Bousmalis K, Trigeorgis G, Silberman N, et al. Domain separation networks[J/OL]. arXiv, 2016: 1608.06019[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2016arXiv160806019B. |
47 | Yi Z, Zhang H, Tan P, et al. Dualgan: Unsupervised dual learning for image-to-image translation[J/OL]. arXiv, 2017: 1704.02510[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2017arXiv170402510Y. |
48 | Zhu J, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C].IEEE International Conference on Computer Vision (ICCV), 2017: 2242-2251. |
49 | Yang Y, Soatto S. Fda: Fourier domain adaptation for semantic segmentation[J/OL]. arXiv, 2020: 2004.05498[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2020arXiv200405498Y. |
50 | Johnson JM , Khoshgoftaar TM . Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6 (1): 1- 54. |
51 | Xiong J, He AW, Fu M, et al. Improve unseen domain generalization via enhanced local color transformation[C]. Proceedings of the Medical Image Computing and Computer Assisted Intervention-MICCAI 2020, Cham, F, 2020: 433-443. |
52 |
Davide C . Can we open the black box of ai?[J]. Nature, 2016, 538 (7623): 20.
doi: 10.1038/538020a |
53 | Ge Z, Demyanov S, Chen Z, et al. Generative openmax for multi-class open set classification[J/OL]. arXiv, 2017: 1707.07418[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2017arXiv170707418G. |
54 | Heaven WD. Google's medical ai was super accurate in a lab. Real life was a different story[EB/OL]. (2020-08-16)[2020-08-18]. https://www.technologyreview.com/2020/04/27/1000658/google-medical-ai-accurate-lab-real-life-clinic-covid-diabetes-retina-disease/. |
55 | Airdoc取得nmpa人工智能医疗器械三类注册证[EB/OL]. (2020-08-16)[2020-08-18]. https://www.sohu.com/a/412357707_102972. |
[1] | 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73. |
[2] | 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5-9, 21. |
[3] | 赵继宗. 神经外科学是脑科学研究的一支主力军[J]. 山东大学学报 (医学版), 2020, 1(8): 1-4. |
[4] | 曲毅,张焕开,宋先,初宝睿. 人工智能诊断系统在视网膜疾病的研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 39-44. |
[5] | Carol Y. Cheung, 冉安然. 青光眼影像人工智能深度学习研究现状与展望[J]. 山东大学学报 (医学版), 2020, 58(11): 24-32. |
[6] | 林浩添,李龙辉,陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 11-16. |
[7] | 何明光,刘驰,李治玺. 人工智能在眼科真实临床场景的应用:机遇和挑战[J]. 山东大学学报 (医学版), 2020, 58(11): 1-10. |
|