山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (11): 11-16.doi: 10.6040/j.issn.1671-7554.0.2020.1173
Haotian LIN*(),Longhui LI,Jingjing CHEN
摘要:
儿童处于视觉系统发育的关键时期,在此期间发生眼病容易导致不可逆的视功能损伤,造成沉重的家庭和社会经济负担。早发现早治疗一直是儿童眼病防治的重点,但受限于小儿眼科医生的不足,开展大规模的筛查工作十分困难。随着数据处理技术的巨大进步,人工智能在医学领域的应用呈现指数型的增长。目前人工智能在早产儿视网膜病变(ROP)、先天性白内障、斜视、屈光不正和视功能筛查等领域已经得到广泛的研究和应用。人工智能在多种儿童眼病的早期筛查、诊断分期、治疗建议及预后预测中都有着优秀的表现。但儿童眼病的受重视程度远不及成人眼病,仍有许多问题亟待解决。
中图分类号:
1 |
Lee A , Taylor P , Kalpathy-Cramer J , et al. Machine learning has arrived![J]. Ophthalmology, 2017, 124 (12): 1726- 1728.
doi: 10.1016/j.ophtha.2017.08.046 |
2 |
Rahimy E . Deep learning applications in ophthalmology[J]. Curr Opin Ophthalmol, 2018, 29 (3): 254- 260.
doi: 10.1097/ICU.0000000000000470 |
3 |
Schmidt-Erfurth U , Sadeghipour A , Gerendas BS , et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1- 29.
doi: 10.1016/j.preteyeres.2018.07.004 |
4 | Zimmermann A , Carvalho KMMd , Atihe C , et al. Visual development in children aged 0 to 6 years[J]. Arq Bras Oftalmol, 2019, 82 (3): 173- 175. |
5 |
Gulshan V , Peng L , Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316 (22): 2402- 2410.
doi: 10.1001/jama.2016.17216 |
6 |
Varadarajan AV , Poplin R , Blumer K , et al. Deep learning for predicting refractive error from retinal fundus images[J]. Invest Ophthalmol Vis Sci, 2018, 59 (7): 2861- 2868.
doi: 10.1167/iovs.18-23887 |
7 |
De Fauw J , Ledsam JR , Romera-Paredes B , et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24 (9): 1342- 1350.
doi: 10.1038/s41591-018-0107-6 |
8 |
Solebo AL , Teoh L , Rahi J . Epidemiology of blindness in children[J]. Arch Dis Child, 2017, 102 (9): 853- 857.
doi: 10.1136/archdischild-2016-310532 |
9 |
Jonas JB , Aung T , Bourne RR , et al. Glaucoma[J]. Lancet, 2017, 390 (10108): 2183- 2193.
doi: 10.1016/S0140-6736(17)31469-1 |
10 |
De Clerck EEB , Schouten JSAG , Berendschot TTJM , et al. New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review[J]. Lancet Diabetes Endocrinol, 2015, 3 (8): 653- 663.
doi: 10.1016/S2213-8587(15)00136-9 |
11 |
Wong WL , Su X , Li X , et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Glob Health, 2014, 2 (2): 106- 116.
doi: 10.1016/S2214-109X(13)70145-1 |
12 |
Lin H , Zhang L , Lin D , et al. Visual restoration after cataract surgery promotes functional and structural brain recovery[J]. EBioMedicine, 2018, 30: 52- 61.
doi: 10.1016/j.ebiom.2018.03.002 |
13 |
Rajkomar A , Dean J , Kohane I . Machine learning in medicine[J]. N Engl J Med, 2019, 380 (14): 1347- 1358.
doi: 10.1056/NEJMra1814259 |
14 |
Esteva A , Robicquet A , Ramsundar B , et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25 (1): 24- 29.
doi: 10.1038/s41591-018-0316-z |
15 |
Deo RC . Machine Learning in medicine[J]. Circulation, 2015, 132 (20): 1920- 1930.
doi: 10.1161/CIRCULATIONAHA.115.001593 |
16 |
Asaoka R , Murata H , Hirasawa K , et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images[J]. Am J Ophthalmol, 2019, 198: 136- 145.
doi: 10.1016/j.ajo.2018.10.007 |
17 |
Wu X , Huang Y , Liu Z , et al. Universal artificial intelligence platform for collaborative management of cataracts[J]. Br J Ophthalmol, 2019, 103 (11): 1553- 1560.
doi: 10.1136/bjophthalmol-2019-314729 |
18 | 黄玉梅, 麦菁芸, 杨祖钦, 等. 广角数码视网膜成像系统与间接检眼镜在早产儿眼底病变筛查中的应用比较[J]. 中华眼底病杂志, 2017, 33 (1): 64- 66. |
19 |
Heneghan C , Flynn J , O'Keefe M , et al. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis[J]. Med Image Anal, 2002, 6 (4): 407- 429.
doi: 10.1016/S1361-8415(02)00058-0 |
20 |
Rabinowitz MP , Grunwald JE , Karp KA , et al. Progression to severe retinopathy predicted by retinal vessel diameter between 31 and 34 weeks of postconception age[J]. Arch Ophthalmol, 2007, 125 (11): 1495- 1500.
doi: 10.1001/archopht.125.11.1495 |
21 |
Wallace DK , Zhao Z , Freedman SF . A pilot study using "ROPtool" to quantify plus disease in retinopathy of prematurity[J]. J AAPOS, 2007, 11 (4): 381- 387.
doi: 10.1016/j.jaapos.2007.04.008 |
22 |
Gelman R , Martinez-Perez ME , Vanderveen DK , et al. Diagnosis of plus disease in retinopathy of prematurity using Retinal Image multiScale Analysis[J]. Invest Ophthalmol Vis Sci, 2005, 46 (12): 4734- 4738.
doi: 10.1167/iovs.05-0646 |
23 |
Brown JM , Campbell JP , Beers A , et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136: 803- 810.
doi: 10.1001/jamaophthalmol.2018.1934 |
24 |
Wang J , Ju R , Chen Y , et al. Automated retinopathy of prematurity screening using deep neural networks[J]. EBioMedicine, 2018, 35: 361- 368.
doi: 10.1016/j.ebiom.2018.08.033 |
25 | Lin H , Long E , Chen W , et al. Documenting rare disease data in China[J]. Science, 2015, 349 (6252): 1064. |
26 | Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J]. Nat Biomed Eng, 1, 0024 (2017). doi: 10.1038/s41551-016-0024. |
27 |
Lin H , Li R , Liu Z , et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial[J]. EClinicalMedicine, 2019, 9: 52- 59.
doi: 10.1016/j.eclinm.2019.03.001 |
28 |
Lin D , Chen J , Lin Z , et al. A practical model for the identification of congenital cataracts using machine learning[J]. EBioMedicine, 2020, 51: 102621.
doi: 10.1016/j.ebiom.2019.102621 |
29 |
Lin D , Liu Z , Chen J , et al. Practical pattern of surgical timing of childhood cataract in China: a cross-sectional database study[J]. Int J Surg, 2019, 62: 56- 61.
doi: 10.1016/j.ijsu.2019.01.012 |
30 |
Zhang K , Liu X , Jiang J , et al. Prediction of postoperative complications of pediatric cataract patients using data mining[J]. J Transl Med, 2019, 17 (1): 2.
doi: 10.1186/s12967-018-1758-2 |
31 |
Gunton KB , Wasserman BN , DeBenedictis C . Strabismus[J]. Primary Care Clinics in Office Practice, 2015, 42 (3): 393- 407.
doi: 10.1016/j.pop.2015.05.006 |
32 | Lu J, Fan Z, Zheng C, et al. Automated strabismus detection for telemedicine applications[J]. arXiv, 2018, 1809.02940. |
33 |
Chen Z , Fu H , Lo WL , et al. Strabismus recognition using eye-tracking data and convolutional neural networks[J]. J Healthc Eng, 2018, 2018: 7692198.
doi: 10.1155/2018/7692198 |
34 |
Gramatikov BI . Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning[J]. Biomed Eng Online, 2017, 16 (1): 52.
doi: 10.1186/s12938-017-0339-6 |
35 |
Ikuno Y . Overview of the complications of high myopia[J]. Retina, 2017, 37 (12): 2347- 2351.
doi: 10.1097/IAE.0000000000001489 |
36 |
Lin H , Long E , Ding X , et al. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: a retrospective, multicentre machine learning study[J]. PLoS Medicine, 2018, 15 (11): e1002674.
doi: 10.1371/journal.pmed.1002674 |
37 |
Yang Y , Li R , Lin D , et al. Automatic identification of myopia based on ocular appearance images using deep learning[J]. Ann Transl Med, 2020, 8 (11): 705.
doi: 10.21037/atm.2019.12.39 |
38 | Van Eenwyk J , Agah A , Giangiacomo J , et al. Artificial intelligence techniques for automatic screening of amblyogenic factors[J]. Trans Am Ophthalmol Soc, 2008, 106: 64- 73. |
39 |
Long E , Liu Z , Xiang Y , et al. Discrimination of the behavioural dynamics of visually impaired infants via deep learning[J]. Nature Biomedical Engineering, 2019, 3 (11): 860- 869.
doi: 10.1038/s41551-019-0461-9 |
40 |
Nilsson Benfatto M , qvist Seimyr G , Ygge J , et al. Screening for dyslexia using eye tracking during reading[J]. PLoS One, 2016, 11 (12): e0165508.
doi: 10.1371/journal.pone.0165508 |
41 |
Vogelsang L , Gilad-Gutnick S , Ehrenberg E , et al. Potential downside of high initial visual acuity[J]. Proc Natl Acad Sci U S A, 2018, 115 (44): 11333- 11338.
doi: 10.1073/pnas.1800901115 |
42 |
Owen CG , Rudnicka AR , Mullen R , et al. Measuring retinal vessel tortuosity in 10-year-old children: validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) program[J]. Invest Ophthalmol Vis Sci, 2009, 50 (5): 2004- 2010.
doi: 10.1167/iovs.08-3018 |
43 | Beers A, Brown J, Chang K, et al. High-resolution medical image synthesis using progressively grown generative adversarial networks[J]. arXiv, 2018, 1805.03144. |
44 | 林铎儒, 吴晓航, 刘臻臻. 眼科开展医学人工智能研究的学科优势[J]. 中国临床新医学, 2020, 13 (2): 127- 129. |
LIN Duoru , WU Xiaohan , LIU Zhenzhen . Discipline advantage of medical artificial intelligence in ophthalmology research[J]. Chinese Journal of New Clinical Medicine, 2020, 13 (2): 127- 129. |
[1] | 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73. |
[2] | 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5-9, 21. |
[3] | 赵继宗. 神经外科学是脑科学研究的一支主力军[J]. 山东大学学报 (医学版), 2020, 1(8): 1-4. |
[4] | 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81-87. |
[5] | 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61-66. |
[6] | 曲毅,张焕开,宋先,初宝睿. 人工智能诊断系统在视网膜疾病的研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 39-44. |
[7] | Carol Y. Cheung, 冉安然. 青光眼影像人工智能深度学习研究现状与展望[J]. 山东大学学报 (医学版), 2020, 58(11): 24-32. |
[8] | 戈宗元,贺婉佶,琚烈,姚轩,王璘,黄烨霖,杨志文,熊健皓,包怡宁,李明,张兵,赵昕. 眼科人工智能的算法新进展[J]. 山东大学学报 (医学版), 2020, 58(11): 17-23. |
[9] | 何明光,刘驰,李治玺. 人工智能在眼科真实临床场景的应用:机遇和挑战[J]. 山东大学学报 (医学版), 2020, 58(11): 1-10. |
|