您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (11): 11-16.doi: 10.6040/j.issn.1671-7554.0.2020.1173

• 眼科人工智能新进展专题 • 上一篇    下一篇

儿童眼病的人工智能研究进展

林浩添*(),李龙辉,陈睛晶   

  1. 中山大学中山眼科中心/眼科学国家重点实验室, 广东 广州 510060
  • 收稿日期:2020-08-17 出版日期:2020-11-10 发布日期:2020-11-04
  • 通讯作者: 林浩添 E-mail:linht5@mail.sysu.edu.cn
  • 作者简介:林浩添,中山大学中山眼科中心副主任,人工智能与大数据学科带头人,主任医师、研究员、博士研究生导师,国家优秀青年基金获得者、国家重点研发项目首席科学家、广东省医学领军人才和“特支计划”科技创新领军人才、中国五四青年奖章获得者。兼任中国人工智能学会智慧医疗专委会副主任委员、全国青联委员、中华医学会眼科分会青年委员、广东省青年科学家协会常务副会长兼秘书长。从事医疗大数据在诊疗及人工智能技术的转化应用研究。对各种常见眼病的防治具有多年临床经验,擅长白内障超声乳化联合人工晶状体植入手术,尤其对先天性白内障等儿童眼病的防治具有丰富经验。以第一作者及通讯作者发表SCI论文100多篇,涵盖了国际顶级期刊Nature、Science、Lancet、BMJ、Nature Biomedical Engineering(2017, 2019, 2020)、PLoS Med等。其中,作为第一作者研发的白内障新疗法成功应用于临床(Nature, 2016),被Nature Medicine评为“2016年生命医学的八大突破性进展之一”;主编专著2部,参与编写专著6部,承担国家自然基金重大研究计划等10余个项目。主持研发的多项智能医疗设备和软件系统应用于临床,并获得30多项国内外专利和软件著作权
  • 基金资助:
    国家重点研发计划(2018YFC0116500);国家自然科学基金面上项目(81770967);国家自然科学基金优秀青年科学基金(81822010);广东省科技厅-广东省重点领域(2018B010109008);广东省科技创新领军人才(2017TX04R031);广东省科技计划项目-科技基础条件建设领域(2019B030316012)

Research progress of artificial intelligence in childhood eye diseases

Haotian LIN*(),Longhui LI,Jingjing CHEN   

  1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong, China
  • Received:2020-08-17 Online:2020-11-10 Published:2020-11-04
  • Contact: Haotian LIN E-mail:linht5@mail.sysu.edu.cn

摘要:

儿童处于视觉系统发育的关键时期,在此期间发生眼病容易导致不可逆的视功能损伤,造成沉重的家庭和社会经济负担。早发现早治疗一直是儿童眼病防治的重点,但受限于小儿眼科医生的不足,开展大规模的筛查工作十分困难。随着数据处理技术的巨大进步,人工智能在医学领域的应用呈现指数型的增长。目前人工智能在早产儿视网膜病变(ROP)、先天性白内障、斜视、屈光不正和视功能筛查等领域已经得到广泛的研究和应用。人工智能在多种儿童眼病的早期筛查、诊断分期、治疗建议及预后预测中都有着优秀的表现。但儿童眼病的受重视程度远不及成人眼病,仍有许多问题亟待解决。

关键词: 人工智能, 机器学习, 深度学习, 儿童眼病

Abstract:

Childhood is a critical period of visual system development, during which eye diseases can easily lead to irreversible visual impairment and cause heavy family and socioeconomic burdens. Early screening and early treatment have always been essential, but due to the shortage of pediatric ophthalmologists, it is very difficult to carry out large-scale screening. With the tremendous progress of data processing technology, artificial intelligence is used greatly in the medical field. At present, artificial intelligence has been widely studied and applied in the fields of retinopathy of prematurity (ROP), congenital cataract, strabismus, refractive error and visual function screening. It has excellent performance in early screening, diagnosis and staging, treatment recommendations, and prognosis prediction of a variety of childhood eye diseases. However, childhood eye diseases are far less focused than adult eye diseases, and there are still many problems to be solved.

Key words: Artificial intelligence, Machine learning, Deep learning, Childhood eye diseases

中图分类号: 

  • R779.7
1 Lee A , Taylor P , Kalpathy-Cramer J , et al. Machine learning has arrived![J]. Ophthalmology, 2017, 124 (12): 1726- 1728.
doi: 10.1016/j.ophtha.2017.08.046
2 Rahimy E . Deep learning applications in ophthalmology[J]. Curr Opin Ophthalmol, 2018, 29 (3): 254- 260.
doi: 10.1097/ICU.0000000000000470
3 Schmidt-Erfurth U , Sadeghipour A , Gerendas BS , et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1- 29.
doi: 10.1016/j.preteyeres.2018.07.004
4 Zimmermann A , Carvalho KMMd , Atihe C , et al. Visual development in children aged 0 to 6 years[J]. Arq Bras Oftalmol, 2019, 82 (3): 173- 175.
5 Gulshan V , Peng L , Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316 (22): 2402- 2410.
doi: 10.1001/jama.2016.17216
6 Varadarajan AV , Poplin R , Blumer K , et al. Deep learning for predicting refractive error from retinal fundus images[J]. Invest Ophthalmol Vis Sci, 2018, 59 (7): 2861- 2868.
doi: 10.1167/iovs.18-23887
7 De Fauw J , Ledsam JR , Romera-Paredes B , et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24 (9): 1342- 1350.
doi: 10.1038/s41591-018-0107-6
8 Solebo AL , Teoh L , Rahi J . Epidemiology of blindness in children[J]. Arch Dis Child, 2017, 102 (9): 853- 857.
doi: 10.1136/archdischild-2016-310532
9 Jonas JB , Aung T , Bourne RR , et al. Glaucoma[J]. Lancet, 2017, 390 (10108): 2183- 2193.
doi: 10.1016/S0140-6736(17)31469-1
10 De Clerck EEB , Schouten JSAG , Berendschot TTJM , et al. New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review[J]. Lancet Diabetes Endocrinol, 2015, 3 (8): 653- 663.
doi: 10.1016/S2213-8587(15)00136-9
11 Wong WL , Su X , Li X , et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Glob Health, 2014, 2 (2): 106- 116.
doi: 10.1016/S2214-109X(13)70145-1
12 Lin H , Zhang L , Lin D , et al. Visual restoration after cataract surgery promotes functional and structural brain recovery[J]. EBioMedicine, 2018, 30: 52- 61.
doi: 10.1016/j.ebiom.2018.03.002
13 Rajkomar A , Dean J , Kohane I . Machine learning in medicine[J]. N Engl J Med, 2019, 380 (14): 1347- 1358.
doi: 10.1056/NEJMra1814259
14 Esteva A , Robicquet A , Ramsundar B , et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25 (1): 24- 29.
doi: 10.1038/s41591-018-0316-z
15 Deo RC . Machine Learning in medicine[J]. Circulation, 2015, 132 (20): 1920- 1930.
doi: 10.1161/CIRCULATIONAHA.115.001593
16 Asaoka R , Murata H , Hirasawa K , et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images[J]. Am J Ophthalmol, 2019, 198: 136- 145.
doi: 10.1016/j.ajo.2018.10.007
17 Wu X , Huang Y , Liu Z , et al. Universal artificial intelligence platform for collaborative management of cataracts[J]. Br J Ophthalmol, 2019, 103 (11): 1553- 1560.
doi: 10.1136/bjophthalmol-2019-314729
18 黄玉梅, 麦菁芸, 杨祖钦, 等. 广角数码视网膜成像系统与间接检眼镜在早产儿眼底病变筛查中的应用比较[J]. 中华眼底病杂志, 2017, 33 (1): 64- 66.
19 Heneghan C , Flynn J , O'Keefe M , et al. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis[J]. Med Image Anal, 2002, 6 (4): 407- 429.
doi: 10.1016/S1361-8415(02)00058-0
20 Rabinowitz MP , Grunwald JE , Karp KA , et al. Progression to severe retinopathy predicted by retinal vessel diameter between 31 and 34 weeks of postconception age[J]. Arch Ophthalmol, 2007, 125 (11): 1495- 1500.
doi: 10.1001/archopht.125.11.1495
21 Wallace DK , Zhao Z , Freedman SF . A pilot study using "ROPtool" to quantify plus disease in retinopathy of prematurity[J]. J AAPOS, 2007, 11 (4): 381- 387.
doi: 10.1016/j.jaapos.2007.04.008
22 Gelman R , Martinez-Perez ME , Vanderveen DK , et al. Diagnosis of plus disease in retinopathy of prematurity using Retinal Image multiScale Analysis[J]. Invest Ophthalmol Vis Sci, 2005, 46 (12): 4734- 4738.
doi: 10.1167/iovs.05-0646
23 Brown JM , Campbell JP , Beers A , et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136: 803- 810.
doi: 10.1001/jamaophthalmol.2018.1934
24 Wang J , Ju R , Chen Y , et al. Automated retinopathy of prematurity screening using deep neural networks[J]. EBioMedicine, 2018, 35: 361- 368.
doi: 10.1016/j.ebiom.2018.08.033
25 Lin H , Long E , Chen W , et al. Documenting rare disease data in China[J]. Science, 2015, 349 (6252): 1064.
26 Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J]. Nat Biomed Eng, 1, 0024 (2017). doi: 10.1038/s41551-016-0024.
27 Lin H , Li R , Liu Z , et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial[J]. EClinicalMedicine, 2019, 9: 52- 59.
doi: 10.1016/j.eclinm.2019.03.001
28 Lin D , Chen J , Lin Z , et al. A practical model for the identification of congenital cataracts using machine learning[J]. EBioMedicine, 2020, 51: 102621.
doi: 10.1016/j.ebiom.2019.102621
29 Lin D , Liu Z , Chen J , et al. Practical pattern of surgical timing of childhood cataract in China: a cross-sectional database study[J]. Int J Surg, 2019, 62: 56- 61.
doi: 10.1016/j.ijsu.2019.01.012
30 Zhang K , Liu X , Jiang J , et al. Prediction of postoperative complications of pediatric cataract patients using data mining[J]. J Transl Med, 2019, 17 (1): 2.
doi: 10.1186/s12967-018-1758-2
31 Gunton KB , Wasserman BN , DeBenedictis C . Strabismus[J]. Primary Care Clinics in Office Practice, 2015, 42 (3): 393- 407.
doi: 10.1016/j.pop.2015.05.006
32 Lu J, Fan Z, Zheng C, et al. Automated strabismus detection for telemedicine applications[J]. arXiv, 2018, 1809.02940.
33 Chen Z , Fu H , Lo WL , et al. Strabismus recognition using eye-tracking data and convolutional neural networks[J]. J Healthc Eng, 2018, 2018: 7692198.
doi: 10.1155/2018/7692198
34 Gramatikov BI . Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning[J]. Biomed Eng Online, 2017, 16 (1): 52.
doi: 10.1186/s12938-017-0339-6
35 Ikuno Y . Overview of the complications of high myopia[J]. Retina, 2017, 37 (12): 2347- 2351.
doi: 10.1097/IAE.0000000000001489
36 Lin H , Long E , Ding X , et al. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: a retrospective, multicentre machine learning study[J]. PLoS Medicine, 2018, 15 (11): e1002674.
doi: 10.1371/journal.pmed.1002674
37 Yang Y , Li R , Lin D , et al. Automatic identification of myopia based on ocular appearance images using deep learning[J]. Ann Transl Med, 2020, 8 (11): 705.
doi: 10.21037/atm.2019.12.39
38 Van Eenwyk J , Agah A , Giangiacomo J , et al. Artificial intelligence techniques for automatic screening of amblyogenic factors[J]. Trans Am Ophthalmol Soc, 2008, 106: 64- 73.
39 Long E , Liu Z , Xiang Y , et al. Discrimination of the behavioural dynamics of visually impaired infants via deep learning[J]. Nature Biomedical Engineering, 2019, 3 (11): 860- 869.
doi: 10.1038/s41551-019-0461-9
40 Nilsson Benfatto M , qvist Seimyr G , Ygge J , et al. Screening for dyslexia using eye tracking during reading[J]. PLoS One, 2016, 11 (12): e0165508.
doi: 10.1371/journal.pone.0165508
41 Vogelsang L , Gilad-Gutnick S , Ehrenberg E , et al. Potential downside of high initial visual acuity[J]. Proc Natl Acad Sci U S A, 2018, 115 (44): 11333- 11338.
doi: 10.1073/pnas.1800901115
42 Owen CG , Rudnicka AR , Mullen R , et al. Measuring retinal vessel tortuosity in 10-year-old children: validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) program[J]. Invest Ophthalmol Vis Sci, 2009, 50 (5): 2004- 2010.
doi: 10.1167/iovs.08-3018
43 Beers A, Brown J, Chang K, et al. High-resolution medical image synthesis using progressively grown generative adversarial networks[J]. arXiv, 2018, 1805.03144.
44 林铎儒, 吴晓航, 刘臻臻. 眼科开展医学人工智能研究的学科优势[J]. 中国临床新医学, 2020, 13 (2): 127- 129.
LIN Duoru , WU Xiaohan , LIU Zhenzhen . Discipline advantage of medical artificial intelligence in ophthalmology research[J]. Chinese Journal of New Clinical Medicine, 2020, 13 (2): 127- 129.
[1] 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73.
[2] 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5-9, 21.
[3] 赵继宗. 神经外科学是脑科学研究的一支主力军[J]. 山东大学学报 (医学版), 2020, 1(8): 1-4.
[4] 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81-87.
[5] 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61-66.
[6] 曲毅,张焕开,宋先,初宝睿. 人工智能诊断系统在视网膜疾病的研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 39-44.
[7] Carol Y. Cheung, 冉安然. 青光眼影像人工智能深度学习研究现状与展望[J]. 山东大学学报 (医学版), 2020, 58(11): 24-32.
[8] 戈宗元,贺婉佶,琚烈,姚轩,王璘,黄烨霖,杨志文,熊健皓,包怡宁,李明,张兵,赵昕. 眼科人工智能的算法新进展[J]. 山东大学学报 (医学版), 2020, 58(11): 17-23.
[9] 何明光,刘驰,李治玺. 人工智能在眼科真实临床场景的应用:机遇和挑战[J]. 山东大学学报 (医学版), 2020, 58(11): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[3] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[4] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[5] 罗昕,何兵,聂清生,侯震波,董军,李玉花,曾祥芹,刘伟,孔德民,曹金凤. 磁共振扩散加权成像单指数模型与扩散峰度成像模型在61例肾透明细胞癌分级中的对比[J]. 山东大学学报 (医学版), 2020, 1(7): 89 -95 .
[6] 张迪,于猛,刘霞. 神经调控技术简述[J]. 山东大学学报 (医学版), 2020, 1(8): 50 -60 .
[7] 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61 -66 .
[8] 陈安静,张训. 靶向小类泛素化修饰的胶质瘤治疗新策略[J]. 山东大学学报 (医学版), 2020, 1(8): 88 -94 .
[9] 张洪彬,赵寒辉,王素霞,周鹏,贺青卿,王延群,丁伟平,柳刚. 303例甲状旁腺切除术围术期观察及术后严重低钙血症危险因素分析[J]. 山东大学学报 (医学版), 2020, 1(9): 14 -20 .
[10] 孙薏丰,高玉,梁永媛,高杨. CPLX2在30例肝癌组织的表达及其对体外细胞增殖与侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 34 -39 .