山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (11): 24-32, 38.doi: 10.6040/j.issn.1671-7554.0.2020.1249
摘要:
青光眼是一组异质性神经退行性疾病,其特征是视网膜神经节细胞及其轴突逐渐消失,现已成为全球不可逆性失明的主要原因。人工智能(AI)是由机器展示的智能,而深度学习(DL)是其中一个基于深度神经网络的分支,在医学成像领域取得了重大突破。在青光眼影像方面,已有越来越多的研究将DL应用于眼底图像以及光学相干断层扫描(OCT),以检测青光眼性视神经病变。有很好的结果显示,将DL技术整合到影像中进行青光眼评估是高效、准确的,这可能会解决当前实践和临床工作流程中的一些难题。但是,未来进一步的研究对于解决现存挑战至关重要,例如为不同研究之间的图像标记建立标准,将“黑匣子”的学习过程进行可视化,提高模型在未知数据集上的泛化能力,开发基于DL的实际应用程序,以及建立合理的临床工作流程,进行前瞻性验证和成本效益分析等。本文总结了AI应用于青光眼影像的最新研究现状,并讨论了对临床的潜在影响和未来的研究方向。
中图分类号:
1 |
Weinreb RN , Aung T , Medeiros FA . The pathophysiology and treatment of glaucoma: a review[J]. JAMA, 2014, 311 (18): 1901- 1911.
doi: 10.1001/jama.2014.3192 |
2 |
Tham YC , Li X , Wong TY , et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121 (11): 2081- 2090.
doi: 10.1016/j.ophtha.2014.05.013 |
3 |
Weinreb RN , Leung CKS , Crowston JG , et al. Primary open-angle glaucoma[J]. Nat Rev Dis Primers, 2016, 2: 16067.
doi: 10.1016/S0140-6736(04)16257-0 |
4 |
Jonas JB , Aung T , Bourne RR , et al. Glaucoma[J]. Lancet, 2017, 390 (10108): 2183- 2193.
doi: 10.1016/S0140-6736(17)31469-1 |
5 |
Momont AC , Mills RP . Glaucoma screening: current perspectives and future directions[J]. Semin Ophthalmol, 2013, 28 (3): 185- 190.
doi: 10.3109/08820538.2013.771200 |
6 |
Schuman JS . Detection and diagnosis of glaucoma: ocular imaging[J]. Invest Ophthalmol Vis Sci, 2012, 53 (5): 2488- 2490.
doi: 10.1167/iovs.12-9483k |
7 |
Rossetto JD , Melo LAS , Campos M , et al. Agreement on the evaluation of glaucomatous optic nerve head findings by ophthalmology residents and a glaucoma specialist[J]. Clin Ophthalmol, 2017, 11: 1281- 1284.
doi: 10.2147/OPTH.S140225 |
8 |
Cheung CY , Leung CK , Lin D , et al. Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography[J]. Ophthalmology, 2008, 115 (8): 1347- 1351.
doi: 10.1016/j.ophtha.2007.11.027 |
9 |
Cheung CY , Chan N , Leung CK . Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: impact of signal strength on analysis of the RNFL map[J]. Asia Pac J Ophthalmol (Phila), 2012, 1 (1): 19- 23.
doi: 10.1097/APO.0b013e31823e595d |
10 |
Biswas S , Lin C , Leung CK . Evaluation of a myopic normative database for analysis of retinal nerve fiber layer thickness[J]. JAMA Ophthalmol, 2016, 134 (9): 1032- 1039.
doi: 10.1001/jamaophthalmol.2016.2343 |
11 | Andresen SL . John McCarthy: father of AI[J]. IEEE Intell Syst, 2002, 17 (5): 84- 85. |
12 | Simon A DMS , Venkatesan S , Babu DRR . An overview of machine learning and its applications[J]. International Journal of Electrical Sciences & Engineering, 2015, 1 (1): 22- 24. |
13 |
Shinde PP , Shah S . A review of machine learning and deep learning applications[J]. 2018 Fourth International Conference on Computing Communication Control and Automation (Iccubea), Pune, India, 2018, 1- 8.
doi: 10.1109/ICCUBEA.2018.8697857 |
14 |
Aggarwal CC . Training deep neural networks[M]. Cham: Springer International Publishing, 2018: 105- 167.
doi: 10.1007/978-3-319-94463-0_3 |
15 |
Becker AS , Mueller M , Stoffel E , et al. Classification of breast cancer form ultrasound imaging using a generic deep learning analysis software: a pilot study[J]. Br J Radiol, 2017, 20170576.
doi: 10.1259/bjr.20170576 |
16 |
Walsh SLF , Calandriello L , Silva M , et al. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study[J]. Lancet Respir Med, 2018, 6 (11): 837- 845.
doi: 10.1016/S2213-2600(18)30286-8 |
17 |
Brinker TJ , Hekler A , Enk A , et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task[J]. Eur J Cancer, 2019, 111: 148- 154.
doi: 10.1016/j.ejca.2019.02.005 |
18 |
de Fauw J , Ledsam JR , Romera-Paredes B , et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24 (9): 1342- 1350.
doi: 10.1038/s41591-018-0107-6 |
19 |
Ting DSW , Cheung CY , Lim G , et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318 (22): 2211- 2223.
doi: 10.1001/jama.2017.18152 |
20 |
Kermany DS , Goldbaum M , Cai W , et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172 (5): 1122- 1131.
doi: 10.1016/j.cell.2018.02.010 |
21 |
Hekler A , Utikal JS , Enk AH , et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images[J]. Eur J Cancer, 2019, 118: 91- 96.
doi: 10.1016/j.ejca.2019.06.012 |
22 |
Maron RC , Weichenthal M , Utikal JS , et al. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks[J]. Eur J Cancer, 2019, 119: 57- 65.
doi: 10.1016/j.ejca.2019.06.013 |
23 |
Dascalu A , David EO . Skin cancer detection by deep learning and sound analysis algorithms: a prospective clinical study of an elementary dermoscope[J]. EBioMedicine, 2019, 43: 107- 113.
doi: 10.1016/j.ebiom.2019.04.055 |
24 |
Al-Antari MA , Al-Masni MA , Kim TS . Deep learning computer-aided diagnosis for breast Lesion in digital mammogram[J]. Adv Exp Med Biol, 2020, 1213: 59- 72.
doi: 10.1007/978-3-030-33128-3_4 |
25 | O'Mahony N , Campbell S , Carvalho A , et al. Deep learning vs. traditional computer vision[J]. Adv Intell Syst, 2020, 943: 128- 144. |
26 |
Wang JJ , Ma YL , Zhang LB , et al. Deep learning for smart manufacturing: Methods and applications[J]. J Manuf Syst, 2018, 48: 144- 156.
doi: 10.1016/j.jmsy.2018.01.003 |
27 |
Rawat W , Wang Z . Deep convolutional neural networks for image classification: a comprehensive review[J]. Neural Comput, 2017, 29 (9): 2352- 449.
doi: 10.1162/neco_a_00990 |
28 | Aggarwal CC. Convolutional Neural Networks. In: Neural Networks and Deep Learning[J]. Springer Cham, 2018. doi: 10.1007/978-3-319-94463-0_8. |
29 |
Krizhevsky A , Sutskever I , Hinton GE . ImageNet classification with deep convolutional neural networks[J]. Commun ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386 |
30 |
LeCun Y , Bengio Y , Hinton G . Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539 |
31 |
Benuwa B , Zhan YZ , Ghansah B , et al. A review of deep machine learning[J]. Int J Eng Res Afr, 2016, 24: 124- 136.
doi: 10.4028/www.scientific.net/JERA.24.124 |
32 |
Ying X . An overview of overfitting and its solutions[J]. 2018 International conference on computer information science and application technology, 2019, 1168.
doi: 10.1088/1742-6596/1168/2/022022 |
33 | Aggarwal CC. Teaching deep learners to generalize. in: neural networks and deep learning[J]. Springer, Cham, 2018. doi: 10.1007/978-3-319-94463-0_4. |
34 |
Zilly J , Buhmann JM , Mahapatra D . Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation[J]. Comput Med Imag Grap, 2017, 55: 28- 41.
doi: 10.1016/j.compmedimag.2016.07.012 |
35 |
Yu S , Xiao D , Frost S , et al. Robust optic disc and cup segmentation with deep learning for Glaucoma detection[J]. Comput Med Imaging Graph, 2019, 74: 61- 71.
doi: 10.1016/j.compmedimag |
36 |
Sevastopolsky A . Optic disc and cup segmentation methods for Glaucoma detection with modification of U-Net convolutional neural network[J]. Pattern Recognit Image Anal, 2017, 27 (3): 618- 624.
doi: 10.1134/S1054661817030269 |
37 |
Fu H , Cheng J , Xu Y , et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Trans Med Imaging, 2018, 37 (7): 1597- 1605.
doi: 10.1109/TMI.2018.2791488 |
38 |
Li Z , He Y , Keel S , et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125 (8): 1199- 1206.
doi: 10.1016/j.ophtha.2018.01.023 |
39 |
Liu H , Li L , Michael Wormstone I , et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs[J]. JAMA Ophthalmol, 2019, 137 (12): 1353- 1360.
doi: 10.1001/jamaophthalmol.2019.3501 |
40 |
Medeiros FA , Jammal AA , Thompson AC . From machine to machine: an oct-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs[J]. Ophthalmology, 2019, 126 (4): 513- 521.
doi: 10.1016/j.ophtha.2018.12.033 |
41 |
Thompson AC , Jammal AA , Medeiros FA . A deep learning algorithm to quantify neuroretinal rim loss from optic disc photographs[J]. Am J Ophthalmol, 2019, 201: 9- 18.
doi: 10.1016/j.ajo |
42 |
Asaoka R , Murata H , Hirasawa K , et al. Using Deep Learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images[J]. Am J Ophthalmol, 2019, 198: 136- 145.
doi: 10.1016/j.ajo |
43 |
Yosinski J , Clune J , Bengio Y , et al. How transferable are features in deep neural networks?[J]. Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014, (2): 3320- 3328.
doi: 10.5555/2969033.2969197 |
44 |
Lee J , Kim YK , Park KH , et al. Diagnosing glaucoma with spectral-domain optical coherence tomography using deep learning classifier[J]. Journal of Glaucoma, 2020, 29 (4): 287- 294.
doi: 10.1097/IJG.0000000000001458 |
45 |
Thompson AC , Jammal AA , Berchuck SI , et al. Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans[J]. JAMA Ophthalmol, 2020, 138 (4): 333- 339.
doi: 10.1001/jamaophthalmol.2019.5983 |
46 |
Wang X , Chen H , Ran AR , et al. Towards multi-center Glaucoma OCT image screening with semi-supervised joint structure and function multi-task learning[J]. Med Image Anal, 2020, 63: 101695.
doi: 10.1016/j.media |
47 |
Maetschke S , Antony B , Ishikawa H , et al. A feature agnostic approach for glaucoma detection in OCT volumes[J]. PLoS One, 2019, 14 (7): e0219126.
doi: 10.1371/journal.pone.0219126 |
48 |
Ran AR , Cheung CY , Wang X , et al. Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis[J]. Lancet Digit Heal, 2019, 1 (4): 172- 182.
doi: 10.1016/S2589-7500(19)30085-8 |
49 |
Badano A , Graff CG , Badal A , et al. Evaluation of digital breast tomosynthesis as replacement of full-field digital mammography using an in silico imaging trial[J]. Jama Netw Open, 2018, 1 (7): e185474.
doi: 10.1001/jamanetworkopen.2018.5474 |
50 |
Cha KH , Petrick N , Pezeshk A , et al. Reducing overfitting of a deep learning breast mass detection algorithm in mammography using synthetic images[J]. Proc SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 1095004..
doi: 10.1117/12.2512604 |
51 |
Goodfellow IJ , Pouget-Abadie J , Mirza M , et al. Generative Adversarial Nets[J]. Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014, (2): 2672- 2680.
doi: 10.5555/2969033.2969125 |
52 |
Sun Y , Zhou CF , Fu YW , et al. Parasitic Gan for Semi-Supervised Brain Tumor Segmentation[J]. Ieee Image Proc, 2019, 1535- 1539.
doi: 10.1109/ICIP.2019.8803073 |
53 |
Yang Y , Nan F , Yang P , et al. GAN-Based Semi-Supervised Learning Approach for Clinical Decision Support in Health-IoT Platform[J]. IEEE Access, 2019, 7: 8048- 8057.
doi: 10.1109/ACCESS |
54 |
Wang X , Tang FY , Chen H , et al. UD-MIL: Uncertainty-driven deep multiple instance learning for OCT image classification[J]. IEEE J Biomed Health Inform, 2020, 1.
doi: 10.1109/jbhi |
55 |
Fu HZ , Li F , Sun X , et al. AGE challenge- angle closure glaucoma evaluation in anterior segment optical coherence tomography[J]. Medical Image Analysis, 2020, (66): 101798.
doi: 10.1016/j.media.2020.101798 |
56 | Mariottoni E, Datta S, Dov D, et al. Artificial intelligence mapping of structure to function in glaucoma[J]. 2020, 9(2): 19. |
57 |
Yu S , Xiao D , Frost Shaun , et al. Robust optic disc and cup segmentation with deep learning for glaucoma detection[J]. Computerized Medical Imaging Analysis Graphics, 2019, (74): 61- 71.
doi: 10.1016/j.compmedimag |
58 |
Tan NYQ , Friedman DS , Stalmans I , et al. Glaucoma screening: where are we and where do we need to go?[J]. Curr Opin Ophthalmol, 2020, 31 (2): 91- 100.
doi: 10.1097/ICU.0000000000000649 |
[1] | 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73. |
[2] | 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5-9, 21. |
[3] | 赵继宗. 神经外科学是脑科学研究的一支主力军[J]. 山东大学学报 (医学版), 2020, 1(8): 1-4. |
[4] | 曲毅,张焕开,宋先,初宝睿. 人工智能诊断系统在视网膜疾病的研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 39-44. |
[5] | 戈宗元,贺婉佶,琚烈,姚轩,王璘,黄烨霖,杨志文,熊健皓,包怡宁,李明,张兵,赵昕. 眼科人工智能的算法新进展[J]. 山东大学学报 (医学版), 2020, 58(11): 17-23. |
[6] | 林浩添,李龙辉,陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 11-16. |
[7] | 何明光,刘驰,李治玺. 人工智能在眼科真实临床场景的应用:机遇和挑战[J]. 山东大学学报 (医学版), 2020, 58(11): 1-10. |
|