您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (8): 49-58.doi: 10.6040/j.issn.1671-7554.0.2024.0556

• • 上一篇    

雌马酚对DN的保护作用及潜在靶点

杜学识,倪向敏,梁馨予,白倩,朱文艺,王建   

  • 发布日期:2024-09-20
  • 通讯作者: 王建. E-mail:wangjian_xq@tmmu.edu.cn
  • 基金资助:
    重庆英才·创新创业领军人才项目(CQYC20220303514);骨髓型急性放射综合征教育部医药基础研究创新中心开放项目(ARSBIC-B-202403)

The protect effect of equol and its potential targets in the context of diabetic nephropathy

DU Xueshi, NI Xiangmin, LIANG Xinyu, BAI Qian, ZHU Wenyi, WANG Jian   

  1. Department of Nutrition, the Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
  • Published:2024-09-20

摘要: 目的 通过网络药理学方法探讨雌马酚(equol, Eq)对糖尿病肾病(diabetic nephropathy, DN)的潜在作用靶点,对相关保护作用靶点进行实验验证。 方法 利用有机小分子生物活性数据库(PubChem)、小分子药物靶点预测在线平台(SwissTargetPrediction)和药效预测靶点数据库(PharmMapper)筛选出Eq的潜在靶点,随后与DisGeNET基因疾病关联数据库、人类基因组数据库(GeneCards)和在线人类孟德尔遗传病数据库(OMIM)共同选取的糖尿病肾病靶点取交集,然后通过STRING平台进行蛋白相互作用(protein-protein interaction, PPI)研究、通过对关键靶点进行基因本体(Gene Ontology, GO)分析,以及与京都基因和基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路富集研究,利用Cytoscape3.8.0软件,构建出“药物-靶点-疾病”网络图,并通过分子对接方法,验证了潜在的保护作用靶点。在体外培养MPC5细胞并分别用不同浓度的Eq处理48 h。通过CCK-8检测各组细胞存活率,以确定雌马酚干预的最佳浓度梯度,最终实验分组设置为:对照(Control)组、模型(Model)组(30 mmol/L高糖培养基)、低剂量Eq组(模型+1×10-8mol/L Eq)、中剂量Eq组(模型组+1×10-7mol/L Eq)、高剂量Eq组(模型+1×10-6mol/L Eq);通过流式细胞仪来分析各组的凋亡状况;Western blotting检测各组细胞中EGFR、P-EGFR、Bcl-2、Bax和Cleaved Caspase-3蛋白表达水平。 结果 通过对Eq与DN的交集靶点进行分析,共发现128个目标,其中核心靶点包括PIK3CB、PIK3CA、AKT2、MAPK1、HRAS、RAF1、MAP2K1和EGFR等。流式实验结果表明,Eq干预后细胞存活率相较于模型组明显提高、凋亡率明显下降(P<0.05),Westem blotting实验显示,雌马酚干预后抗凋亡蛋白Bcl-2表达水平较模型组显著升高(P<0.05),而P-EGFR/EGFR、Bax和Cleaved Caspase-3蛋白表达水平显著降低(P<0.05)。 结论 Eq对DN发生发展保护作用具有多个靶点和通路调控途径,特别是Eq干预可以缓解肾脏足细胞凋亡现象,其机制可能与EGFR通路有关。

关键词: 雌马酚, 糖尿病肾病, 网络药理学, 分子对接, 凋亡

Abstract: Objective To study the potential role of equol in(diabetic nephropathy, DN)through network pharmacology methods, and validate the target for the protective effect of equol on DN. Methods The potential targets of Eq were identified through screening in databases such as PubChem, SwissTargetPrediction, and PharmMapper, intersecting with DN targets identified in DisGeNET, GeneCards, and OMIM. Subsequently, protein-protein interaction(PPI)analysis was conducted using the STRING platform. Enrichment analyses of Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways were performed for key targets, and the “component target disease” network diagram was constructed by Cytoscape 3.8.0 software. Molecular docking was used to validate possible targets. Cultivate MPC5 cells in vitro and treat them with varying concentrations of Eq for 48 hours.The cell viability of each group was measured using the CCK-8 assay to determine the optimal concentration gradient for equol intervention. The final experimental group settings were as follows: Control group(GLU, 5.5 mmol/L), Model group(GLU, 30 mmol/L), LEq group(model+1×10-8mol/L Eq), MEq group(model +1×10-7mol/L Eq), and HEq group(model+1×10-6mol/L Eq). Apoptosis in each group was analyzed using flow cytometry. Western bloting was used to detect the protein expression levels of EGFR, P-EGFR, Bcl-2, Bax and Cleaved Caspase-3 in each group. Results A total of 128 intersection targets of Eq and DN were obtained. The core targets were PIK3CB、PIK3CA、AKT2、MAPK1、HRAS、RAF1、MAP2K1 and EGFR. The findings from the flow cytometry experiments indicated that, in comparison to the model group, the cell survival rate and apoptosis rate were notably elevated following Eq intervention. Western bloting experiment indicated that the expression level of anti-apoptotic protein Bcl-2 was significantly higher than that of the model group after equol intervention(P<0.05). The protein expression levels of P-EGFR/EGFR, Bax and Cleaved Caspase-3 were significantly reduced(P<0.05). Conclusion Equol exhibits multi-target and pathway regulatory effects against DN. Intervention with equol can alleviate the phenomenon of apoptosis in renal podocytes, and its mechanism may be related to the EGFR signaling pathway.

Key words: Equol, Diabetic nephropathy, Network pharmacology, Molecular docking, Apoptosis

中图分类号: 

  • R459.3
[1] Jitraknatee J, Ruengorn C, Nochaiwong S. Prevalence and risk factors of chronic kidney disease among type 2 diabetes patients: a cross-sectional study in primary care practice[J]. Sci Rep, 2020, 10(1): 6205. doi:10.1038/s41598-020-63443-4.
[2] Podgórski P, Konieczny A, LIS Ł, et al. Glomerular podocytes in diabetic renal disease[J]. Adv Clin Exp Med, 2019, 28(12): 1711-1715.
[3] Li XL, Zhu QQ, Zheng R, et al. Puerarin attenuates diabetic nephropathy by promoting autophagy in podocytes[J]. Front Physiol, 2020, 11: 73. doi:10.3389/fphys.2020.00073.
[4] Conti S, Remuzzi G, Benigni A, et al. Imaging the kidney with an unconventional scanning electron microscopy technique: analysis of the subpodocyte space in diabetic mice[J]. Int J Mol Sci, 2022, 23(3): 1699. doi:10.3390/ijms23031699.
[5] Pool KR, Kent TC, Blache D. Oestrogenic metabolite equol negatively impacts the functionality of ram spermatozoa in vitro[J]. Theriogenology, 2021, 172: 216-222. doi:10.1016/j.theriogenology.2021.07.005.
[6] Lund TD, Munson DJ, Haldy ME, et al. Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback[J]. Biol Reprod, 2004, 70(4): 1188-1195.
[7] Choi EJ, Kim GH. The antioxidant activity of daidzein metabolites, O-desmethylangolensin and equol, in HepG2 cells[J]. Mol Med Rep, 2014, 9(1): 328-332. doi:10.3892/mmr.2013.1752.
[8] Wei XJ, Wu J, Ni YD, et al. Antioxidant effect of a phytoestrogen equol on cultured muscle cells of embryonic broilers[J]. In Vitro Cell Dev Biol Anim, 2011, 47(10): 735-741.
[9] Gong YN, Lv JP, Pang XY, et al. Advances in the metabolic mechanism and functional characteristics of equol[J]. Foods, 2023, 12(12): 2334. doi:10.3390/foods12122334.
[10] Mayo B, Vázquez L, Flórez AB. Equol: a bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects[J]. Nutrients, 2019, 11(9): 2231. doi:10.3390/nu11092231.
[11] Sekikawa A, Wharton W, Butts B, et al. Potential protective mechanisms of S-equol, a metabolite of soy isoflavone by the gut microbiome, on cognitive decline and dementia[J]. Int J Mol Sci, 2022, 23(19): 11921. doi:10.3390/ijms231911921.
[12] 李硕, 倪向敏, 徐喆, 等. 雌马酚对2型糖尿病大鼠的肾脏保护作用[J]. 陆军军医大学学报, 2022, 44(10): 1009-1017. LI Shuo, NI Xiangmin, XU Zhe, et al. Renal protective effect of equol on type 2 diabetic rats[J].Journal of Army Medical University, 2022, 44(10): 1009-1017.
[13] Eberhardt J, Santos-Martins D, Tillack AF, et al. AutoDock vina 1.2.0: new docking methods, expanded force field, and python bindings[J]. J Chem Inf Model, 2021, 61(8): 3891-3898.
[14] Wang YL, Bryant SH, Cheng TJ, et al. PubChem BioAssay: 2017 update[J]. Nucleic Acids Res, 2017, 45(1): 955-963.
[15] Yu CP, Zhang H, Liu SX, et al. Flot2 acts as a novel mediator of podocyte injury in proteinuric kidney disease[J]. Int J Biol Sci, 2023, 19(2): 502-520.
[16] Hsu MF, Ito Y, Afkarian M, et al. Deficiency of the Src homology phosphatase 2 in podocytes is associated with renoprotective effects in mice under hyperglycemia[J]. Cell Mol Life Sci, 2022, 79(10): 516. doi:10.1007/s00018-022-04517-6.
[17] 范晓艳, 王元耕, 陈泽涛. 黄芪桂枝五物汤治疗心衰的网络药理学机制[J]. 山东大学学报(医学版), 2022, 60(11): 70-81. FAN Xiaoyan, WANG Yuangeng, CHEN Zetao. Network pharmacologic mechanism of Huangqi Guizhi Wuwu Decoction in treating heart failure[J]. Journal of Shandong University(Health Sciences), 2022, 60(11): 70-81.
[18] Wu Y, Chen Y. Research progress on ferroptosis in diabetic kidney disease[J]. Front Endocrinol, 2022, 13: 945976. doi:10.3389/fendo.2022.945976.
[19] Srivastava SP, Kanasaki K, Goodwin JE. Editorial: combating diabetes and diabetic kidney disease[J]. Front Pharmacol, 2021, 12: 716029. doi:10.3389/fphar.2021.716029.
[20] Osuna-Prieto FJ, Martinez-Tellez B, Segura-Carretero A, et al. Activation of brown adipose tissue and promotion of white adipose tissue browning by plant-based dietary components in rodents: a systematic review[J]. Adv Nutr, 2021, 12(6): 2147-2156.
[21] Nishad R, Meshram P, Singh AK, et al. Activation of Notch1 signaling in podocytes by glucose-derived AGEs contributes to proteinuria[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e001203. doi:10.1136/bmjdrc-2020-001203.
[22] Zhu JJ, Zhao Q, Qiu Y, et al. Soy isoflavones intake and obesity in Chinese adults: a cross-sectional study in Shanghai, China[J]. Nutrients, 2021, 13(8): 2715. doi:10.3390/nu13082715.
[23] Nakai S, Fujita M, Kamei Y. Health promotion effects of soy isoflavones[J]. J Nutr Sci Vitaminol, 2020, 66(6): 502-507.
[24] Mayo B, Vázquez L, Flórez AB. Equol: a bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects[J]. Nutrients, 2019, 11(9): 2231. doi:10.3390/nu11092231.
[25] Takahashi A, Anzai Y, Tanji N, et al. Association of equol with obesity in postmenopausal women[J]. Menopause, 2021, 28(7): 807-810.
[26] Takahashi A, Kokubun M, Anzai Y, et al. Association between equol production and metabolic syndrome in Japanese women in their 50s-60s[J]. Menopause, 2022, 29(10): 1196-1199.
[27] Wu YY, Gou WL, Yan Y, et al. Gut microbiota and acylcarnitine metabolites connect the beneficial association between equol and adiposity in adults: a prospective cohort study[J]. Am J Clin Nutr, 2022, 116(6): 1831-1841.
[28] 张贵明, 倪向敏, 崔涵强, 等. 雌马酚对肥胖模型大鼠脂代谢的影响[J]. 营养学报, 2023, 45(3): 287-293. ZHANG Guiming, NI Xiangmin, CUI Hanqiang, et al. Effect of equol on lipid metabolism in obese rats[J]. Acta Nutrimenta Sinica, 2023, 45(3): 287-293.
[29] Boezio B, Audouze K, Ducrot P, et al. Network-based approaches in pharmacology[J]. Mol Inform, 2017, 36(10): 10. doi:10.1002/minf.201700048.
[30] Guo MF, Dai YJ, Gao JR, et al. Uncovering the mechanism of Astragalus membranaceus in the treatment of diabetic nephropathy based on network pharmacology[J]. J Diabetes Res, 2020: 5947304. doi:10.1155/2020/5947304.
[31] Agu PC, Afiukwa CA, Orji OU, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management[J]. Sci Rep, 2023, 13(1): 13398. doi:10.1038/s41598-023-40160-2.
[32] Ge LC, Chen ZJ, Liu HY, et al. Involvement of activating ERK1/2 through G protein coupled receptor 30 and estrogen receptor α/β in low doses of bisphenol A promoting growth of Sertoli TM4 cells[J]. Toxicol Lett, 2014, 226(1): 81-89.
[33] Zhao Y, Liu HK, Fan MZ, et al. G protein-coupled receptor 30 mediates cell proliferation of goat mammary epithelial cells via MEK/ERK&PI3K/AKT signaling pathway[J]. Cell Cycle, 2022, 21(19): 2027-2037.
[34] Lei BL, Xu LB, Zhang XL, et al. The proliferation effects of fluoxetine and amitriptyline on human breast cancer cells and the underlying molecular mechanisms[J]. Environ Toxicol Pharmacol, 2021, 83: 103586. doi:10.1016/j.etap.2021.103586.
[35] Ariyani W, Miyazaki W, Koibuchi N. A novel mechanism of S-equol action in neurons and astrocytes: the possible involvement of GPR30/GPER1[J]. Int J Mol Sci, 2019, 20(20): 5178. doi:10.3390/ijms20205178.
[36] Perlman AS, Chevalier JM, Wilkinson P, et al. Serum inflammatory and immune mediators are elevated in early stage diabetic nephropathy[J]. Ann Clin Lab Sci, 2015, 45(3): 256-263.
[37] Chen JC, Chen JK, Harris RC. EGF receptor deletion in podocytes attenuates diabetic nephropathy[J]. J Am Soc Nephrol, 2015, 26(5): 1115-1125.
[38] Harskamp LR, Gansevoort RT, van Goor H, et al. The epidermal growth factor receptor pathway in chronic kidney diseases[J]. Nat Rev Nephrol, 2016, 12(8): 496-506.
[39] 杨元凤, 熊高才, 黎豫川, 等. 鹿苓安肾颗粒对慢性肾功能衰竭大鼠炎症反应及细胞凋亡的影响[J]. 山东大学学报(医学版), 2023, 61(10): 9-16. YANG Yuanfeng, XIONG Gaocai, LI Yuchuan, et al. Effects of Luling Anshen Granule on the inflammatory response and cell apoptosis in rats with chronic renal failure[J]. Journal of Shandong University(Health Sciences), 2023, 61(10): 9-16.
[40] Ni XM, Wu B, Li S, et al. Equol exerts a protective effect on postmenopausal osteoporosis by upregulating OPG/RANKL pathway[J]. Phytomedicine, 2023, 108: 154509. doi:10.1016/j.phymed.2022.154509.
[1] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[2] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[3] 王静,刘晓菲,曾荣,许长娟,张锦涛,董亮. 基于机器学习算法鉴定哮喘的坏死性凋亡相关生物标志物[J]. 山东大学学报 (医学版), 2024, 62(7): 21-32.
[4] 姜子晗,芦兴晨,孙露,赵蕙琛,左丹,马小莉,刘元涛,张玉超. NR4A1通过IκBα/NF-κB通路调控过氧化氢诱导人脐静脉内皮细胞凋亡的机制[J]. 山东大学学报 (医学版), 2024, 62(3): 11-19.
[5] 曹华琳,贾彦召,曲莉,尹昕. CircFAT1调节miR-296-3p/MAPRE1轴对鼻咽癌细胞增殖、凋亡和放疗敏感性的影响[J]. 山东大学学报 (医学版), 2023, 61(9): 38-46.
[6] 高玉杰,龙启福,胡英,许玉珍,王茹,永胜. 生物信息学鉴定低氧诱导小鼠肾脏线粒体损伤的Hub基因及其作用机制[J]. 山东大学学报 (医学版), 2023, 61(9): 57-68.
[7] 刘金波,刘凯文,向崇鑫,程雷. 西红花苷对椎间盘退变的保护作用[J]. 山东大学学报 (医学版), 2023, 61(9): 84-93.
[8] 张嘉颖,宿荣允,王英惠,王洪刚,柳刚. ACE2基因通过调控Nrf2/HO-1通路改善肾缺血再灌注损伤[J]. 山东大学学报 (医学版), 2023, 61(4): 1-9.
[9] 杨元凤,熊高才,黎豫川,罗玉玲,张敬杰. 鹿苓安肾颗粒对慢性肾功能衰竭大鼠炎症反应及细胞凋亡的影响[J]. 山东大学学报 (医学版), 2023, 61(10): 9-16.
[10] 赵凯,尹心宝,张宗亮,王振林,朱冠群,王科. 黄芪皂苷Ⅱ对肾透明细胞癌细胞生长抑制作用及机制[J]. 山东大学学报 (医学版), 2023, 61(1): 10-16.
[11] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[12] 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21.
[13] 李明波,黄燕波,刘俊城,任东成,谭成双,徐继禧,丁金勇. 黄芪桂枝五物汤治疗强直性脊柱炎的网络药理学探讨[J]. 山东大学学报 (医学版), 2022, 60(3): 29-38.
[14] 范晓艳,王元耕,陈泽涛. 黄芪桂枝五物汤治疗心衰的网络药理学机制[J]. 山东大学学报 (医学版), 2022, 60(11): 70-81.
[15] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!