您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (8): 34-43.doi: 10.6040/j.issn.1671-7554.0.2021.1339

• 临床医学 • 上一篇    下一篇

基于数据库构建乳腺癌焦亡相关基因的预后风险模型

贺士卿1,李皖皖1,董书晴1,牟婧怡1,刘宇莹1,魏思雨1,刘钊2,张家新2   

  1. 1.徐州医科大学, 江苏 徐州 221004;2.徐州医科大学附属医院甲乳外科, 江苏 徐州 221004
  • 发布日期:2022-07-27
  • 通讯作者: 刘 钊. E-mail:xylzhao9999@163.com张家新. E-mail:zhangjiaxin1969@163.com
  • 基金资助:
    国家自然科学基金(16611622);中国乳腺肿瘤青年学者科研项目(CYBER-2021-010);徐州市重点研发计划(KG21218)

Construction of a prognostic risk model of pyroptosis-related genes in breast cancer based on database

HE Shiqing1, LI Wanwan1, DONG Shuqing1, MOU Jingyi1, LIU Yuying1, WEI Siyu1, LIU Zhao2, ZHANG Jiaxin2   

  1. 1.Xuzhou Medical University, Xuzhou 221004, Jiangsu, China;
    2. Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jingsu, China
  • Published:2022-07-27

摘要: 目的 探究焦亡相关差异表达基因(DEGs)在乳腺癌中预后价值并构建预后风险模型。 方法 从癌症基因组图谱(TCGA)和肿瘤基因表达数据库(GEO)官网下载乳腺癌的基因测序、临床数据,筛选焦亡相关DEGs。将乳腺癌患者进行聚类分析。在TCGA队列中以最小绝对收缩和选择算子(LASSO)方法建立模型。利用Kaplan-Meier生存曲线、受试者工作特征曲线(ROC)、单因素及多因素Cox回归独立预后因素分析等评价该模型。GEO队列为验证集。通过GO、KEGG、ssGSEA分析风险DEGs的富集情况。 结果 筛选出焦亡相关DEGs,聚类分析可见C2组总生存期(OS)延长,差异有统计学意义(P=0.020)。该模型K-M生存分析显示,高风险组OS缩短(TCGA队列中P<0.001,GEO队列中P=0.018)。ROC曲线下面积(AUC)表明该模型具有一定预测能力。单因素、多因素Cox回归分析表明,年龄、M、N分期和风险评分为OS的独立预测因子。GO、 KEGG富集与ssGSEA分析证实了风险相关DEGs与免疫炎症因子和通路有关。 结论 本研究构建了由9个焦亡相关基因组成的乳腺癌预后风险模型,为乳腺癌患者的风险预后评估提供了参考。

关键词: 乳腺癌, 焦亡, 免疫, 预后, 预测模型

Abstract: Objective To explore the prognostic value of pyroptosis-related differentially expressed genes(DEGs)in breast cancer and to construct a prognostic risk model. Methods Gene sequencing and clinical data of breast cancer were downloaded from The Cancer Genome Atlas(TCGA)and Gene Expression Ominibus(GEO)to screen for pyroptosis-related DEGs. A cluster analysis was performed on breast cancer patients. The model of TCGA cohort was established by the least absolute shrinkage and selection operator(LASSO)method, which was then evaluated with Kaplan-Meier survival curve, receiver operating characteristic curve(ROC), univariate and multivariate Cox regression independent prognostic factor analysis. The GEO cohort was used as the validation set. Enrichment of DGEs was analyzed with GO, KEGG, and ssGSEA. Results Pyroptosis-related DEGs were screened, cluster analysis showed that the overall survival(OS)of C2 group was prolonged, and the difference was statistically significant?(P=0.020). K-M survival analysis showed that OS was shortened in the high-risk group(P<0.001 in the TCGA cohort, P=0.018 in the GEO cohort). The area under the ROC curve(AUC)showed that the model had certain predictive ability. Univariate and multivariate Cox regression showed that age, M and N stage, and risk score were independent predictors of OS. GO, KEGG and ssGSEA analyses confirmed that pyroptosis-related DEGs were related to immune inflammatory factors and pathways. Conclusion This study constructed a prognostic risk model of breast cancer composed of 9 pyroptosis-related genes, which can provide reference for the risk and prognosis assessment of breast cancer patients.

Key words: Breast cancer, Pyroptosis, Immunity, Prognosis, Prediction model

中图分类号: 

  • R737.9
[1] Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021 [J]. CACancer J Clin, 2021, 71(1): 7-33.
[2] Britt KL, Cuzick J, Phillips KA. Key steps for effective breast cancer prevention [J]. NatRev Cancer, 2020, 20(8): 417-436.
[3] Barzaman K, Karami J, Zarei Z, et al. Breast cancer: biology, biomarkers, and treatments [J]. Int Immunopharmacol, 2020, 84: 106535. doi: 10.1016/j.intimp.2020.106535.
[4] Liu X, Lieberman J. A mechanistic understanding of pyroptosis: the fiery death triggered by invasive infection [J]. Adv Immunol 2017, 135: 81-117. doi: 10.1016/bs.ai.2017.02.002.
[5] 胡颖超, 杨硕. 细胞焦亡的研究进展[J]. 南京医科大学学报(自然科学版), 2021, 41(8): 1245-1251. HU Yingchao, YANG Shuo. Advance in research of phroptosis [J]. 2021, 41(8): 1245-1251.
[6] Tan Y, Chen Q, Li X, et al. Pyroptosis: a new paradigm of cell death for fighting against cancer [J]. J Exp Clin Cancer Res, 2021, 40(1): 153.
[7] Ni J, Peng Y, Yang FL, et al. Overexpression of CLEC3A promotes tumor progression and poor prognosis in breast invasive ductal cancer [J]. OncoTargets Ther, 2018, 11: 3303-12. doi: 10.2147/OTT.S161311.
[8] Bakaeean B, Gholamin M, Tabatabaee Yazdi SA, et al. Novel biomarkers aim at detecting metastatic sentinel lymph nodes in breast cancer [J]. Iran Biomed J, 2020, 24(3): 183-191.
[9] Ren C, Pan R, Hou L, et al. Suppression of CLEC3A inhibits osteosarcoma cell proliferation and promotes their chemosensitivity through the AKT1/mTOR/HIF1α signaling pathway [J]. Mol Med Rep, 2020, 21(4): 1739-1748.
[10] Tsunezumi J, Higashi S, Miyazaki K. Matrilysin(MMP-7)cleaves C-type lectin domain family 3 member A(CLEC3A)on tumor cell surface and modulates its cell adhesion activity [J]. J Cell Biochem, 2009, 106(4): 693-702.
[11] Miki M, Oono T, Fujimori N, et al. CLEC3A, MMP7, and LCN2 as novel markers for predicting recurrence in resected G1 and G2 pancreatic neuroendocrine tumors [J]. Cancer Med, 2019, 8(8): 3748-3760.
[12] Qi T, Qu J, Tu C, et al. Super-enhancer associated five-gene risk score model predicts overall survival in multiple myeloma patients [J]. Front Cell Dev Biol, 2020, 8: 596777. doi: 10.3389/fcell.2020.596777.
[13] Zhang G, Liu Y, Dong F, et al. Transcription/expression of KLRB1 gene as a prognostic indicator in human esophageal squamous cell carcinoma [J]. Comb Chem High Throughput Screen, 2020, 23(7): 667-674.
[14] Qin R, Cao L, Ye C, et al. A novel prognostic prediction model based on seven immune-related RNAs for predicting overall survival of patients in early cervical squamous cell carcinoma [J]. BMC Med Genomics, 2021, 14(1): 49.
[15] Ma C, Luo H, Cao J, et al. Identification of a novel tumor microenvironment-associated eight-gene signature for prognosis prediction in lung adenocarcinoma [J]. Front Mol Biosci, 2020, 7: 571641. doi: 10.3389/fmolb.2020.571641.
[16] Zheng M, Mullikin H, Hester A, et al. Development and validation of a novel 11-gene prognostic model for serous ovarian carcinomas based on lipid metabolism expression profile [J]. Int J Mol Sci, 2020, 21(23): 9169.
[17] Zhang Y, Di X, Chen G, et al. An immune-related signature that to improve prognosis prediction of breast cancer [J]. Am J Cancer Res, 2021, 11(4): 1267-1285.
[18] Park YJ, Ryu H, Choi G, et al. IL-27 confers a protumorigenic activity of regulatory T cells via CD39 [J]. Proc Natl Acad Sci U S A, 2019, 116(8): 3106-3111.
[19] Wang L, Liu J, Tai J, et al. A prospective study revealing the role of an immune-related eRNA, WAKMAR2, in breast cancer [J]. Sci Rep, 2021, 11(1): 15328.
[20] Ignacio RMC, Gibbs CR, Kim S, et al. Serum amyloid A predisposes inflammatory tumor microenvironment in triple negative breast cancer [J]. Oncotarget, 2019, 10(4): 511-526.
[21] Jiao J, Jiang L, Luo Y. N6-methyladenosine-related RNA signature predicting the prognosis of ovarian cancer [J]. Recent Pat Anticancer Drug Discov, 2021, 16(3): 407-416.
[22] Liang J, Zhao W, Tong P, et al. Comprehensive molecular characterization of inhibitors of apoptosis proteins(IAPs)for therapeutic targeting in cancer [J]. BMC Med Genomics, 2020, 13(1): 7.
[23] Cao C, Lin S, Zhi W, et al. LOXL2 expression status is correlated with molecular characterizations of cervical carcinoma and associated with poor cancer survival via epithelial-mesenchymal transition(EMT)phenotype [J]. Front Oncol, 2020, 10: 284. doi: 10.3389/fonc.2020.00284.
[24] Shahi P, Wang CY, Chou J, et al. GATA3 targets semaphorin 3B in mammary epithelial cells to suppress breast cancer progression and metastasis [J]. Oncogene, 2017, 36(40): 5567-5575.
[25] Milioli HH, Sousa KS, Kaviski R, et al. Comparative proteomics of primary breast carcinomas and lymph node metastases outlining markers of tumor invasion [J]. Cancer Genomics Proteomics, 2015, 12(2): 89-101.
[1] 黄方 康瑞 吴春林. VEGFC、NF-κBp65及Survivin在鼻咽癌中的表达及临床意义[J]. 山东大学学报(医学版), 2209, 47(6): 83-.
[2] 王欣,邢春燕,杨艳平. 血清磷酸丙酮酸水合酶检测对诊断侵袭性白念珠菌感染的临床价值[J]. 山东大学学报(医学版), 2209, 47(6): 92-94.
[3] 闫鹏 王蓉 杜怡峰 沈伦乾. 老年性痴呆患者尿中AD7c-NTP含量的研究[J]. 山东大学学报(医学版), 2209, 47(6): 106-.
[4] 徐平 于国放 李霞. 不同类型甲状腺上动脉PSV对Graves病与桥本氏甲状腺炎鉴别诊断的价值[J]. 山东大学学报(医学版), 2209, 47(6): 62-64.
[5] 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96.
[6] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[7] 孙文雄,吴日超,郑贤静,李丽, 张友忠. 宫颈血管周上皮样细胞肿瘤1例[J]. 山东大学学报 (医学版), 2022, 60(9): 125-128.
[8] 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46.
[9] 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71.
[10] 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5.
[11] 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49.
[12] 相宇娇,刘强,刘璐,石艳. 原发免疫性血小板减少症树突状细胞异常免疫反应机制[J]. 山东大学学报 (医学版), 2022, 60(7): 89-97.
[13] 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122.
[14] 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82.
[15] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[8] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .