您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (4): 28-34.doi: 10.6040/j.issn.1671-7554.0.2020.1295

• 基础医学 • 上一篇    下一篇

Atg7-siRNA通过调节精氨酸循环干扰食管癌ECA109细胞放疗敏感性

张小红1*,周云2*,杜秋莹1,任慧欣1,王超群1   

  1. 1. 徐州医科大学临床与实验病理学实验室, 江苏 徐州 221004;2. 徐州医科大学徐州临床学院放疗科, 江苏 徐州 221004
  • 发布日期:2021-04-30
  • 通讯作者: 王超群. E-mail:185542017@qq.com*共同第一作者
  • 基金资助:
    徐州市推动科技创新专项资金(KC17111)

Atg7-siRNA interferes with radiosensitivity of esophageal cancer ECA109 cells by regulating arginine circulation

ZHANG Xiaohong1*, ZHOU Yun2*, DU Qiuying1, REN Huixin1, WANG Chaoqun1   

  1. 1. Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China;
    2. Department of Radiotherapy, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
  • Published:2021-04-30

摘要: 目的 探讨siRNA干扰自噬相关基因7(Atg7)后,对ECA109细胞放疗敏感性的影响以及对精氨酸循环相关通路的调控。 方法 食管癌ECA109细胞分为Ctrl组、siRNA组、Ctrl+R8Gy组(8Gy放射剂量处理的转染Atg7-Ctrl的ECA109细胞)和siRNA+R8Gy组(8Gy放射剂量处理的转染Atg7-siRNA的ECA109细胞);采用Western blotting法分别检测各组细胞Atg7、Beclin-1、微管相关蛋白1轻链3Ⅱ(LC3Ⅱ)、精氨酸琥珀酸合成酶1(ASS1)和精氨酸琥珀酸裂解酶(ASL)蛋白的表达。CCK8实验检测精氨酸对ECA109细胞的影响,绘制不同浓度(0、8、16、32、64、128 mmol/L)精氨酸处理下的细胞存活曲线,并计算其IC50IC10,IC10作为后续实验的作用浓度。采用精氨酸和siRNA分别处理细胞,对细胞进行8Gy照射,24 h后通过计算细胞数量评估细胞的死亡率。 结果 无论放疗前后,siRNA干扰均可使细胞的Atg7蛋白下调(P<0.01)。与Ctrl组相比,Ctrl+R8Gy组自噬相关蛋白Beclin-1和LC3Ⅱ上调(P<0.01);与Ctrl+R8Gy组相比,siRNA+R8Gy组自噬相关蛋白Beclin-1和LC3Ⅱ下调(P<0.01)。与Ctrl+R8Gy组相比,siRNA+R8Gy组精氨酸循环相关通路蛋白ASS1和ASL上调(P<0.01)。精氨酸对ECA109细胞具有增殖抑制作用,且呈浓度和时间依赖性。放疗后24 h,细胞死亡量分析显示, siRNA干扰可以提高细胞死亡率(F=73.59,P<0.001),添加精氨酸可以提高细胞死亡率(F=158.72,P<0.001),siRNA和精氨酸同时作用时细胞死亡率最高(F=7.88,P=0.02)。 结论 放疗可以诱导ECA109细胞发生自噬,Atg7敲低可以拮抗放疗诱导的自噬,提高放疗诱导的ECA109细胞死亡率,增加ECA109细胞对放疗的敏感性。Atg7敲低可以调控ECA109细胞放疗后精氨酸循环相关通路蛋白,提高精氨酸浓度增加ECA109细胞的放射敏感性。

关键词: siRNA干扰自噬相关基因7, 精氨酸琥珀酸合成酶1, 精氨酸琥珀酸裂解酶, 食管癌, 精氨酸, 放疗敏感性

Abstract: Objective To investigate the effects of siRNA interference with autophagy related gene 7(Atg7)on the radiosensitivity of ECA109 cells and the regulation of arginine circulation-related pathways. Methods ECA109 cells were divided into four groups: Ctrl group, siRNA group, Ctrl+R8Gy group(ECA109 cells transfected with Atg7-Ctrl at 8Gy radiation dose)and siRNA+R8Gy group(ECA109 cells transfected with Atg7-siRNA at 8Gy radiation dose). The protein expressions of Atg7, Beclin-1, microtubule associated protein 1 light chain 3 Ⅱ(LC3 Ⅱ), arginine succinate synthetase1(ASS1)and arginine succinic acid lyase(ASL)in each group were detected with Western blotting. The effects of arginine were detected with CCK8 assay. The cell survival curves were drawn at different concentrations of arginine(0, 8, 16, 32, 64, 128 mmol/L). IC50 and IC10 were calculated, and IC10 was set as the action concentration in the subsequent experiments. Cells were treated with arginine and siRNA respectively, and irradiated with 8Gy. After 24 h, the cell mortality was assessed by counting the number of cells. Results siRNA interference down-regulated Atg7 before and after radiotherapy(P<0.01). Compared with the Ctrl group, the Ctrl+R8Gy group had up-regulated levels of Beclin-1 and LC3Ⅱ(P<0.01). Compared with the Ctrl+R8Gy group, the siRNA+R8Gy group had down-regulated levels of Beclin-1 and LC3Ⅱ(P<0.01). Compared with the Ctrl+R8Gy group, the siRNA+R8Gy group had up-regulated levels of ASS1 and ASL(P<0.01). Arginine inhibited the proliferation of ECA109 cells in a concentration and time-dependent manner. Cell death analysis showed that siRNA interference(F=73.59, P<0.001)and arginine addition(F=158.72, P<0.001)increased cell mortality. The cell mortality was at the highest level when siRNA and arginine were used in combination(F=7.88, P=0.02). Conclusion Radiotherapy can induce autophagy in ECA109 cells. The Atg7-siRNA interference effectively antagonizes the radiotherapy-induced increase in autophagy, increases the radiotherapy-induced ECA109 cell death, and enhances the radiosensitivity of ECA109 cells. Atg7 knockdown can regulate the arginine circulation-related pathway proteins of ECA109 cells after radiotherapy, and increasing arginine concentration can enhance radiosensitivity of ECA109 cells.

Key words: autophagy related gene 7-siRNA, Arginine succinate synthetase1, Arginine succinic acid lyase, Esophageal cancer, Arginine, Radiosensitivity

中图分类号: 

  • R310.31
[1] Huang P, Sun LY, Zhang YQ. A hopeful natural product, pristimerin, induces apoptosis, cell cycle arrest, and autophagy in esophageal cancer cells [J]. Anal Cell Pathol(Amst), 2019, 2019: 6127169. doi: 10.1155/2019/6127169.
[2] van Meerten E, van der Gaast A. Systemic treatment for oesophageal cancer [J]. Eur J Cancer, 2005, 41(5): 664-672.
[3] Ma H, Zheng S, Zhang X, et al. High mobility group box 1 promotes radioresistance in esophageal squamous cell carcinoma cell lines by modulating autophagy [J]. Cell Death Dis, 2019, 10(2): 136.
[4] Shi Y, Zhang B, Feng X, et al. Apoptosis and autophagy induced by DVDMs-PDT on human esophageal cancer Eca-109 cells [J]. Photodiagnosis Photodyn Ther, 2018, 24: 198-205. doi: 10.1016/j.pdpdt.2018.09.013.
[5] Sharma NK, Sarode SC, Sarode GS, et al. Starvation in cancer cells: circulating arginine is good for cancer but bad for patients [J]. Expert Rev Anticancer Ther, 2019, 19(6): 455-459.
[6] García-Navas R, Munder M, Mollinedo F. Depletion of L-arginine induces autophagy as a cytoprotective response to endoplasmic Reticulum stress in human T lymphocytes [J]. Autophagy, 2012, 8(11): 1557-1576.
[7] Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine [J]. EMBO J, 2017, 36(10): 1302-1315.
[8] Wu GY, Wu ZL, Dai ZL, et al. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans [J]. Amino Acids, 2013, 44(4): 1107-1113.
[9] Shen LJ, Lin WC, Beloussow K, et al. Resistance to the anti-proliferative activity of recombinant arginine deiminase in cell culture correlates with the endogenous enzyme, argininosuccinate synthetase [J]. Cancer Lett, 2003, 191(2): 165-170.
[10] Shen LJ, Beloussow K, Shen WC. Modulation of arginine metabolic pathways as the potential anti-tumor mechanism of recombinant arginine deiminase [J]. Cancer Lett, 2006, 231(1): 30-35.
[11] Feun LG, Kuo MT, Savaraj N. Arginine deprivation in cancer therapy[J]. Curr Opin Clin Nutr Metab Care, 2015, 18(1): 78-82.
[12] Patil MD, Bhaumik J, Babykutty S, et al. Arginine dependence of tumor cells: targeting a chink in cancers armor [J]. Oncogene, 2016, 35(38): 4957-4972.
[13] Cao Y, Feng Y, Zhang Y, et al. L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo [J]. BMC Cancer, 2016, 16: 343. doi: 10.1186/s12885-016-2376-0.
[14] Jahani M, Azadbakht M, Rasouli H, et al. L-arginine/5-fluorouracil combination treatment approaches cells selectively: Rescuing endothelial cells while killing MDA-MB-468 breast cancer cells [J]. Food Chem Toxicol, 2019, 123: 399-411. doi: 10.1016/j.fct.2018.11.018.
[15] Geiger R, Rieckmann JC, Wolf T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity [J]. Cell, 2016, 167(3): 829-842.
[16] Bahl R, Arora S, Nath N, et al. Novel polymorphism in p21(waf1/cip1)cyclin dependent kinase inhibitor gene: association with human esophageal cancer [J]. Oncogene, 2000, 19(3): 323-328.
[17] 章海容, 张小红, 王超群. 哺乳动物雷帕霉素靶蛋白通路调控ECA109细胞放疗敏感性的代谢组学[J]. 山东大学学报(医学版), 2020, 58(1): 6-12. ZHANG Hairong, ZHANG Xiaohong, WANG Chaoqun. A metabonomic study on mTOR pathway regulating radiosensitivity of ECA109 cells[J]. Journal of Shandong University(Health Sciences), 2020, 58(1): 6-12.
[18] Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis [J]. Cell, 2005, 120(2): 237-248.
[19] Apel A, Herr I, Schwarz H, et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy [J]. Cancer Res, 2008, 68(5): 1485-1494.
[20] Benzina S, Altmeyer A, Malek F, et al. High-LET radiation combined with oxaliplatin induce autophagy in U-87 glioblastoma cells [J]. Cancer Lett, 2008, 264(1): 63-70.
[21] Brech A, Ahlquist T, Lothe RA, et al. Autophagy in tumour suppression and promotion [J]. Mol Oncol, 2009, 3(4): 366-375.
[22] Chen YS, Song HX, Lu Y, et al. Autophagy inhibition contributes to radiation sensitization of esophageal squamous carcinoma cells [J]. Dis Esophagus, 2011, 24(6): 437-443.
[23] 陆怡, 濮丽英, 周利群, 等. 免疫营养在恶性肿瘤治疗中的研究现状及进展[J]. 现代肿瘤医学, 2017, 25(22): 3722-3726. LU Yi, PU Liying, ZHOU Liqun, et al. Present status and progress of immunonutrition in the treatment of malignant tumor [J]. Journal of Modern Oncology, 2017, 25(22): 3722-3726.
[24] Lee HY, Mohammed KA, Goldberg EP, et al. Arginine-conjugated albumin microspheres inhibits proliferation and migration in lung cancer cells [J]. Am J Cancer Res, 2013, 3(3): 266-277.
[25] Li X, Wenes M, Romero P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy [J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441.
[26] Stasyk OV, Boretsky YR, Gonchar MV, et al. Recombinant arginine-degrading enzymes in metabolic anticancer therapy and bioanalytics [J]. Cell Biol Int, 2015, 39(3): 246-252.
[27] Kuo MT, Savaraj N, Feun LG. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes [J]. Oncotarget, 2010, 1(4): 246-251.
[28] Li Y, Zeng X, Wang S, et al. Blocking autophagy enhanced leukemia cell death induced by recombinant human arginase [J]. Tumour Biol, 2016, 37(5): 6627-6635.
[1] 王艳莉,冯晔,周秀耕,杨跃,吴楠,方玉,阎石,李少雷,吕超,韩超,杜松涛. 33例食管癌患者围术期补充乳清蛋白粉对术后并发症的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 64-70.
[2] 田辉,易文波,李树海. 达芬奇机器人食管癌切除术之齐鲁实践[J]. 山东大学学报 (医学版), 2022, 60(11): 28-32.
[3] 韩丁培,严越,曹羽钦,孙昕,胡琰霞,汪敏娴,罗艳,施咏梅,谢青,杭钧彪,李鹤成. 加速康复外科理念在胸外科临床实践指导的瑞金医院专家共识[J]. 山东大学学报 (医学版), 2022, 60(11): 11-16.
[4] 孙振国,田辉. 加速康复外科指导下微创食管癌切除术流程优化之齐鲁实践[J]. 山东大学学报 (医学版), 2022, 60(11): 33-37.
[5] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77-81.
[6] 李昌达,史永军,林彦良. 27-羟基胆固醇与胆固醇对裸鼠食管鳞癌和人食管癌细胞增殖的影响[J]. 山东大学学报 (医学版), 2020, 58(11): 45-52.
[7] 章海容, 张小红, 王超群. 哺乳动物雷帕霉素靶蛋白通路调控ECA109细胞放疗敏感性的代谢组学[J]. 山东大学学报 (医学版), 2020, 58(1): 6-12.
[8] 韩福燕,成士清,王召宝,鞠瑛. 食管癌患者外周血红细胞分布宽度检测的临床价值[J]. 山东大学学报(医学版), 2017, 55(7): 67-72.
[9] 李昌,张倩,马芳,解奇,常晓天. PADI2与人多种肿瘤的遗传易感性的关系[J]. 山东大学学报(医学版), 2017, 55(11): 47-53.
[10] 陈东,马专昌,李博,孙鼎琪,张克勤,张辉,傅强. EGCG对老龄大鼠阴茎组织中PRMT1、DDAH、ADMA、NOS通路的影响[J]. 山东大学学报(医学版), 2016, 54(5): 17-22.
[11] 张明明,安永辉,韩彩莉,张瑛琪,马明,李娜,邹长鹏. CIK细胞联合光动力治疗中晚期食管癌的疗效观察[J]. 山东大学学报(医学版), 2016, 54(1): 38-41.
[12] 刘连科, 邵明雯, 马兰, 孙婧, 管丹, 束永前. 食管癌伴神经内分泌分化的临床病理特点及诊断标志物[J]. 山东大学学报(医学版), 2015, 53(7): 87-91.
[13] 周静, 常晓天, 周婷, 崔莹莹, 张蓓, 荣风年. 沉默PADI4基因对卵巢癌细胞系OVCAR3的作用[J]. 山东大学学报(医学版), 2015, 53(6): 48-53.
[14] 赖小航, 杨沛华. 不同血液透析模式对 外周血非对称性二甲基精氨酸及血压的影响[J]. 山东大学学报(医学版), 2014, 52(S2): 25-26.
[15] 周静, 郑亚冰, 闫莉, 常晓天, 赵珊, 荣风年. 雌激素及顺铂对卵巢癌细胞A2780PADI4的表达及其细胞增殖的影响[J]. 山东大学学报(医学版), 2014, 52(12): 30-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王焕亮,孙宝柱,杜洪玫,周长青,张丽. 不同麻醉监测指标调控异丙酚麻醉的比较[J]. 山东大学学报(医学版), 2006, 44(5): 471 -474 .
[2] 宋永红,马春红,吕红娟,朱传福,聂向民,王玫,刘艳,张萍 . 中国北方汉族人群HLA基因多态性研究[J]. 山东大学学报(医学版), 2007, 45(6): 546 -553 .
[3] 侯晓阳,卜培莉,张运,冯进波,刘春喜,李传保,郝明秀. 过氧化酶体增殖物激活受体α抑制血管紧张素Ⅱ促心肌纤维化作用的试验研究[J]. 山东大学学报(医学版), 2007, 45(7): 665 -668 .
[4] 曾季平,王丽娜,王立祥,任晓辉,张孟业,夏文,崔行. 氯化锰致PC12细胞损伤的研究[J]. 山东大学学报(医学版), 2006, 44(5): 467 -470 .
[5] 舒雅,齐峰. 下颌角托在肥胖患者全麻诱导中的应用[J]. 山东大学学报(医学版), 2007, 45(10): 1072 -1074 .
[6] 于慧1,2 ,陈少华1 ,赵家军2 ,高聆3
. 乙醇对人肝L02细胞糖原和GSK3β、PAMPK的影响[J]. 山东大学学报(医学版), 2009, 47(04): 75 -78 .
[7] . 原发性高血压家系与血压正常家系ACE基因I/D突变及CYP11B2基因单核苷酸多态性的相关性研究[J]. 山东大学学报(医学版), 2009, 47(7): 44 -48 .
[8] 亓敏1,梁素忍1,王娜1,甄军晖2,冯进波3,胡昭1. 尿毒清对慢性肾功能衰竭大鼠肾脏纤维化的影响[J]. 山东大学学报(医学版), 2010, 48(3): 57 -60 .
[9] 郑金旭 顾燕兰 万兵. 糜酶抑制剂对肺纤维化的干预作用及其机制研究[J]. 山东大学学报(医学版), 2008, 46(12): 1132 -1135 .
[10] 徐静文1,刘勇2,张德普3,赵东波4,李景新3 . γ-氨基丁酸能系统对肺上皮细胞增殖的影响[J]. 山东大学学报(医学版), 2011, 49(5): 34 -37 .