您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (1): 6-12.doi: 10.6040/j.issn.1671-7554.0.2019.940

• • 上一篇    

哺乳动物雷帕霉素靶蛋白通路调控ECA109细胞放疗敏感性的代谢组学

章海容, 张小红, 王超群   

  1. 徐州医科大学临床与实验病理学实验室, 江苏 徐州 221004
  • 发布日期:2022-09-27
  • 通讯作者: 王超群. E-mail:185542017@qq.com
  • 基金资助:
    徐州市推动科技创新专项资金(KC17111)

A metabonomic study on mTOR pathway regulating radiosensitivity of ECA109 cells

ZHANG Hairong, ZHANG Xiaohong, WANG Chaoqun   

  1. Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
  • Published:2022-09-27

摘要: 目的 探讨哺乳动物雷帕霉素靶蛋白(mTOR)通路对放疗诱导自噬的影响,寻找与放疗敏感性相关的小分子代谢物质及其调控通路。 方法 食管癌ECA109细胞分为对照组、放疗组和放疗联合MHY1485组;采用Western blotting法分别检测各组细胞mTOR、自噬相关蛋白Beclin-1和微管相关蛋白轻链3-II/I比值(LC3-II/I),采用CCK8法分别检测各组细胞经处理后24 h活性。收集放疗组和放疗联合MHY1485组细胞培养液,每组6例,采用液相色谱-质谱(LC-MS)技术对样本进行代谢组学检测,采用偏最小二乘判别分析(PLS-DA)和正交-偏最小二乘判别分析(OPLS-DA)法分析比较两组代谢物质差异。 结果 放疗可以通过抑制mTOR通路来诱导自噬的发生,MHY1485可以激活mTOR从而拮抗放疗诱导的自噬,抑制肿瘤的增殖。与放疗组相比,放疗联合MHY1485组细胞培养液中甜菜碱醛、肌酸、硬脂酸、鸟氨酸、L-胱氨酸和L-脯氨酸上调(P<0.001),瓜氨酸、烟酸、葡萄糖6-磷酸、L-缬氨酸、胸腺嘧啶、甜菜碱、L-精氨酸、L-亮氨酸、L-色氨酸和吡哆醇下调(P<0.001)。 结论 放疗可以抑制mTOR诱导的自噬,激活mTOR可以抵抗放疗诱导的自噬,从而抑制ECA109细胞增殖,增强放疗敏感性。食管癌ECA109细胞放疗组与放疗联合MHY1485组代谢产物不同,采用LC-MS技术检测可以区分放疗组与放疗联合MHY1485组,并发现与放疗敏感相关的代谢物质及其通路。

关键词: 哺乳动物雷帕霉素靶蛋白信号通路, 食管癌, 放射敏感性, 代谢组学

Abstract: Objective To explore the effects of mammalian target of rapamycin(mTOR)pathway on radiotherapy-induced autophagy, to search for the small molecular metabolites related to radiosensitivity and their regulatory pathways. Methods ECA109 cells were divided into three groups: control group, radiotherapy group and radiotherapy plus MHY1485 group. The mTOR, Beclin-1 and LC3-II/I were detected with Western blotting, and cell viability 24h after treatment was determined with CCK8 method. The cell culture medium of radiotherapy group(n=6)and radiotherapy plus MHY1485 group(n=6)were collected and analyzed with liquid chromatography-mass spectrometry(LC-MS). The differences in metabolites between the two groups were analyzed with PLS-DA and OPLS-DA. Results Radiotherapy induced autophagy by inhibiting mTOR pathway, and MHY1485 activated mTOR to antagonize autophagy and inhibited proliferation of tumor cells. Compared with the radiotherapy group, the radiotherapy plus MHY1485 group had upregulated expressions of betaine aldehyde, creatine, stearic acid, ornithine, L-cystine and L-proline(P<0.001), but downregulated expressions of citrulline, niacin, glucose 6-phosphate, L-valine, thymine, betaine, L-arginine, L-leucine, L-tryptophan and pyridoxine(P<0.001). Conclusion Radiotherapy can inhibit mTOR-induced autophagy, which 山 东 大 学 学 报 (医 学 版)58卷1期 -章海容,等. 哺乳动物雷帕霉素靶蛋白通路调控ECA109细胞放疗敏感性的代谢组学 \=-can be resisted by the activation of mTOR, so as to inhibit the proliferation of ECA109 cells and enhance the radiosensitivity. As metabolites in the radiotherapy group are different from those in radiotherapy plus MHY1485 group, metabolites and their pathways related to radiosensitivity can be detected with LC-MS technology.

Key words: Mammalian target of rapamycin, Esophageal cancer, Radiosensitivity, Metabonomics

中图分类号: 

  • R310.31
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2] Cuperlovic-Culf M, Culf AS, Touaibia M, et al. Targeting the latest hallmark of cancer: another attempt at ‘magic bullet’ drugs targeting cancers' metabolic phenotype[J]. Future Oncol, 2012, 8(10): 1315-1330.
[3] Grass GD, Cooper SL, Armeson K, et al. Cervical esophageal cancer: a population-based study [J]. Head Neck, 2015, 37(6): 808-814.
[4] 陆建国. mTOR信号通路与肿瘤研究进展[J]. 现代医药卫生, 2015, 31(2): 199-202.
[5] 马志恒, 蒋海存, 陈建新, 等. mTOR信号通路与胃癌的相关性研究[J]. 国际消化病杂志, 2016, 36(4): 256-258.
[6] Nicholson JK, Connelly J, Lindon JC. Metabonomics: a platform for studying drug toxicity and gene function[J]. Nat Rev Drug Discov, 2002, 1(2): 153-161.
[7] 麦麦提江·阿布杜克热木, 玛依努尔·艾力,郑超. 食管癌患者放化疗前后代谢组学指标改变的观察[J]. 现代肿瘤医学, 2017, 25(18): 2911-2914.
[8] Tokunaga M, Kami K, Ozawa S, et al. Metabolome analysis of esophageal cancer tissues using capillary electrophoresis-time-of-flight mass spectrometry [J]. Int J Oncol, 2018, 52(6): 1947-1958.
[9] Lin L, Huang Z, Gao Y, et al. LC-MS based serum metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery [J]. J Proteome Res, 2011, 10(3): 1396-1405.
[10] Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression [J]. Nature, 2009, 457(7231): 910-914.
[11] Gika HG, Theodoridis GA, Plumb RS. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics [J]. J Pharm Biomed Anal, 2014, 87(1): 12-25.
[12] 王浙宁, 马长春, 梁家豪, 等. 基于1H-NMR及模式识别的大肠癌尿液代谢组学研究[J]. 实用放射学杂志, 2018, 34(6): 126-130. WANG Zhening, MA Changchun, LIANG Jiahao, et al. Urine metabonomics of colorectal cancer based on 1H-NMR and pattern recognition[J]. Pract Radiol, 2018, 34(6): 126-130.
[13] Babcock JT. Rheb mTOR activation and regulation in cancer: novel treatment strategies beyond rapamycin [J]. Curr Drug Targets, 2011, 12(8): 1223-1231.
[14] Nam HY, Han MW, Chang HW, et al. Prolonged autophagy by mTOR inhibitor leads radioresistant cancer cells into senescence[J]. Autophagy, 2013, 9(10): 1631-1632.
[15] Apel A, Herr I, Schwarz H, et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy [J]. Cancer Res, 2008, 68(5): 1485-1494.
[16] Lomonaco SL, Finniss S, Xiang C, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells [J]. Int J Cancer, 2009, 125(3): 717-722.
[17] Lu C, Xie C. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway[J]. Oncol Rep, 2016, 35(6): 3559-3565.
[18] Carew JS, Kelly KR, Nawrocki ST. Autophagy as a target for cancer therapy: new developments [J]. Cancer Manag Res, 2012, 4(1): 357-365.
[19] Tseng HC, Liu WS, Tyan YS, et al. Sensitizing effect of 3-methyladenine on radiation-induced cytotoxicity in radio-resistant HepG2 cells in vitro and in tumor xenografts [J]. Chem Biol Interact, 2011, 192(3): 201-208.
[20] Zhang T, Wu X, Ke C, et al. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling [J]. J Proteome Res, 2013, 12(1): 505-512.
[21] Chantranupong L, Scaria SM, Saxton RA, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway [J]. Cell, 2016, 165(1): 153-164.
[22] Sidney M. Morris J. Arginine metabolism: boundaries of our knowledge [J]. Nutr, 2007, 137(Suppl2): 1602-1609.
[23] Fujigaki S, Nishiumi S, Kobayashi T, et al. Identification of serum biomarkers of chemoradiosensitivity in esophageal cancer via the targeted metabolomics approach [J]. Biomark Med, 2018, 12(3): 827-840.
[24] Qiu F, Huang J, Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers [J]. Cancer Lett, 2015, 364(1): 1-7.
[25] Phillips MM, Sheaff MT, Szlosarek PW. Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges [J]. Cancer Res Treat, 2013, 45(4): 251-262.
[26] Stelter L, Evans M, Jungbluth AA, et al. Imaging of tumor vascularization using fluorescence molecular tomography to monitor arginine deiminase treatment in melanoma [J]. Mol Imaging, 2013, 12(11): 67-73.
[27] Park IS, Kang SW, Shin YJ, et al. Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth [J]. Br J Cancer, 2003, 89(5): 907-914.
[28] Feun LG, Kuo MT, Savaraj N. Arginine deprivation in cancer therapy [J]. Curr Opin Clin Nutr Metab Care, 2015, 18(1): 78-82.
[29] Pavlyk I, Rzhepetskyy Y, Jagielski AK, et al. Arginine deprivation affects glioblastoma cell adhesion, invasiveness and actin cytoskeleton organization by impairment of beta-actin arginylation [J]. Amino Acids, 2015, 47(1): 199-212.
[30] Poillet-Perez L, Xie X, Zhan L, et al. Autophagy maintains tumour growth through circulating arginine [J]. Nature, 2018, 563(7732): 569-573.
[31] 管清梅, 李芳, 王芳芳. 脯氨酸-水二聚体分子间相互作用的理论研究[J]. 阜阳师范学院学报(自然科学版), 2014, 31(3): 17-19.
[32] Pandhare J, Cooper SK, Phang JM. Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor gamma-dependent and-independent mechanisms [J]. J Biol Chem, 2006, 281(4): 2044-2052.
[33] Loayza-Puch F, Rooijers K, Buil LC, et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading [J]. Nature, 2016, 530(7591): 490-494.
[34] Prior FG. Theoretical involvement of vitamin B6 in tumour initiation [J]. Me Hypotheses,1985, 16(4): 421-428.
[1] 王艳莉,冯晔,周秀耕,杨跃,吴楠,方玉,阎石,李少雷,吕超,韩超,杜松涛. 33例食管癌患者围术期补充乳清蛋白粉对术后并发症的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 64-70.
[2] 苑宝文,王沛,黄蔚. 组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用[J]. 山东大学学报 (医学版), 2022, 60(3): 1-12.
[3] 张小红,周云,杜秋莹,任慧欣,王超群. Atg7-siRNA通过调节精氨酸循环干扰食管癌ECA109细胞放疗敏感性[J]. 山东大学学报 (医学版), 2021, 59(4): 28-34.
[4] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77-81.
[5] 李昌达,史永军,林彦良. 27-羟基胆固醇与胆固醇对裸鼠食管鳞癌和人食管癌细胞增殖的影响[J]. 山东大学学报 (医学版), 2020, 58(11): 45-52.
[6] 韩福燕,成士清,王召宝,鞠瑛. 食管癌患者外周血红细胞分布宽度检测的临床价值[J]. 山东大学学报(医学版), 2017, 55(7): 67-72.
[7] 于斐,刘少壮,仲明惟,黄鑫,焦杰,胡三元,于文滨. 基于GC-TOF-MS的结直肠癌代谢组学差异分析[J]. 山东大学学报(医学版), 2016, 54(7): 60-68.
[8] 张明明,安永辉,韩彩莉,张瑛琪,马明,李娜,邹长鹏. CIK细胞联合光动力治疗中晚期食管癌的疗效观察[J]. 山东大学学报(医学版), 2016, 54(1): 38-41.
[9] 刘连科, 邵明雯, 马兰, 孙婧, 管丹, 束永前. 食管癌伴神经内分泌分化的临床病理特点及诊断标志物[J]. 山东大学学报(医学版), 2015, 53(7): 87-91.
[10] 刘盈君, 张涛, 王璐, 刘佳, 常学润, 张敬悬, 薛付忠. 基于随机森林的精神分裂症血清代谢组学研究[J]. 山东大学学报(医学版), 2015, 53(2): 92-96.
[11] 李晓红1,胡立宽1,2,王翠红1,杜元娜1. Glu-GNPs对人肺腺癌细胞株A549放射增敏的初步探讨[J]. 山东大学学报(医学版), 2012, 50(3): 29-.
[12] 陈艳1,李秀梅2,王洪江3,庞作良3,李卉4,姜孝芳4,马莉莉1,谌宏鸣5,李惠武4. 新疆哈萨克族食管癌c-myc的表达及其调控机制[J]. 山东大学学报(医学版), 2011, 49(11): 135-.
[13] 蒋海强1,李运伦2,解君2. 基于高效液相色谱-电喷雾-飞行时间质谱联用技术的高血压病血浆代谢组学分析[J]. 山东大学学报(医学版), 2011, 49(10): 150-.
[14] 张萍1,刘芳2,栾力1,马道新1,王建波1,谭炳煦1,程玉峰1. Rb94联合放疗对裸鼠肺腺癌皮下移植瘤的抑制作用[J]. 山东大学学报(医学版), 2010, 48(6): 26-.
[15] 张好1,周英智2,刁玉涛3,李会庆3,周瑞雪4,赵德利4,雷复华4. 食管癌高发区食管炎影响因素的病例对照研究[J]. 山东大学学报(医学版), 2010, 48(10): 120-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!