山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (1): 6-12.doi: 10.6040/j.issn.1671-7554.0.2019.940
• • 上一篇
章海容, 张小红, 王超群
ZHANG Hairong, ZHANG Xiaohong, WANG Chaoqun
摘要: 目的 探讨哺乳动物雷帕霉素靶蛋白(mTOR)通路对放疗诱导自噬的影响,寻找与放疗敏感性相关的小分子代谢物质及其调控通路。 方法 食管癌ECA109细胞分为对照组、放疗组和放疗联合MHY1485组;采用Western blotting法分别检测各组细胞mTOR、自噬相关蛋白Beclin-1和微管相关蛋白轻链3-II/I比值(LC3-II/I),采用CCK8法分别检测各组细胞经处理后24 h活性。收集放疗组和放疗联合MHY1485组细胞培养液,每组6例,采用液相色谱-质谱(LC-MS)技术对样本进行代谢组学检测,采用偏最小二乘判别分析(PLS-DA)和正交-偏最小二乘判别分析(OPLS-DA)法分析比较两组代谢物质差异。 结果 放疗可以通过抑制mTOR通路来诱导自噬的发生,MHY1485可以激活mTOR从而拮抗放疗诱导的自噬,抑制肿瘤的增殖。与放疗组相比,放疗联合MHY1485组细胞培养液中甜菜碱醛、肌酸、硬脂酸、鸟氨酸、L-胱氨酸和L-脯氨酸上调(P<0.001),瓜氨酸、烟酸、葡萄糖6-磷酸、L-缬氨酸、胸腺嘧啶、甜菜碱、L-精氨酸、L-亮氨酸、L-色氨酸和吡哆醇下调(P<0.001)。 结论 放疗可以抑制mTOR诱导的自噬,激活mTOR可以抵抗放疗诱导的自噬,从而抑制ECA109细胞增殖,增强放疗敏感性。食管癌ECA109细胞放疗组与放疗联合MHY1485组代谢产物不同,采用LC-MS技术检测可以区分放疗组与放疗联合MHY1485组,并发现与放疗敏感相关的代谢物质及其通路。
中图分类号:
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. [2] Cuperlovic-Culf M, Culf AS, Touaibia M, et al. Targeting the latest hallmark of cancer: another attempt at ‘magic bullet’ drugs targeting cancers' metabolic phenotype[J]. Future Oncol, 2012, 8(10): 1315-1330. [3] Grass GD, Cooper SL, Armeson K, et al. Cervical esophageal cancer: a population-based study [J]. Head Neck, 2015, 37(6): 808-814. [4] 陆建国. mTOR信号通路与肿瘤研究进展[J]. 现代医药卫生, 2015, 31(2): 199-202. [5] 马志恒, 蒋海存, 陈建新, 等. mTOR信号通路与胃癌的相关性研究[J]. 国际消化病杂志, 2016, 36(4): 256-258. [6] Nicholson JK, Connelly J, Lindon JC. Metabonomics: a platform for studying drug toxicity and gene function[J]. Nat Rev Drug Discov, 2002, 1(2): 153-161. [7] 麦麦提江·阿布杜克热木, 玛依努尔·艾力,郑超. 食管癌患者放化疗前后代谢组学指标改变的观察[J]. 现代肿瘤医学, 2017, 25(18): 2911-2914. [8] Tokunaga M, Kami K, Ozawa S, et al. Metabolome analysis of esophageal cancer tissues using capillary electrophoresis-time-of-flight mass spectrometry [J]. Int J Oncol, 2018, 52(6): 1947-1958. [9] Lin L, Huang Z, Gao Y, et al. LC-MS based serum metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery [J]. J Proteome Res, 2011, 10(3): 1396-1405. [10] Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression [J]. Nature, 2009, 457(7231): 910-914. [11] Gika HG, Theodoridis GA, Plumb RS. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics [J]. J Pharm Biomed Anal, 2014, 87(1): 12-25. [12] 王浙宁, 马长春, 梁家豪, 等. 基于1H-NMR及模式识别的大肠癌尿液代谢组学研究[J]. 实用放射学杂志, 2018, 34(6): 126-130. WANG Zhening, MA Changchun, LIANG Jiahao, et al. Urine metabonomics of colorectal cancer based on 1H-NMR and pattern recognition[J]. Pract Radiol, 2018, 34(6): 126-130. [13] Babcock JT. Rheb mTOR activation and regulation in cancer: novel treatment strategies beyond rapamycin [J]. Curr Drug Targets, 2011, 12(8): 1223-1231. [14] Nam HY, Han MW, Chang HW, et al. Prolonged autophagy by mTOR inhibitor leads radioresistant cancer cells into senescence[J]. Autophagy, 2013, 9(10): 1631-1632. [15] Apel A, Herr I, Schwarz H, et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy [J]. Cancer Res, 2008, 68(5): 1485-1494. [16] Lomonaco SL, Finniss S, Xiang C, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells [J]. Int J Cancer, 2009, 125(3): 717-722. [17] Lu C, Xie C. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway[J]. Oncol Rep, 2016, 35(6): 3559-3565. [18] Carew JS, Kelly KR, Nawrocki ST. Autophagy as a target for cancer therapy: new developments [J]. Cancer Manag Res, 2012, 4(1): 357-365. [19] Tseng HC, Liu WS, Tyan YS, et al. Sensitizing effect of 3-methyladenine on radiation-induced cytotoxicity in radio-resistant HepG2 cells in vitro and in tumor xenografts [J]. Chem Biol Interact, 2011, 192(3): 201-208. [20] Zhang T, Wu X, Ke C, et al. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling [J]. J Proteome Res, 2013, 12(1): 505-512. [21] Chantranupong L, Scaria SM, Saxton RA, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway [J]. Cell, 2016, 165(1): 153-164. [22] Sidney M. Morris J. Arginine metabolism: boundaries of our knowledge [J]. Nutr, 2007, 137(Suppl2): 1602-1609. [23] Fujigaki S, Nishiumi S, Kobayashi T, et al. Identification of serum biomarkers of chemoradiosensitivity in esophageal cancer via the targeted metabolomics approach [J]. Biomark Med, 2018, 12(3): 827-840. [24] Qiu F, Huang J, Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers [J]. Cancer Lett, 2015, 364(1): 1-7. [25] Phillips MM, Sheaff MT, Szlosarek PW. Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges [J]. Cancer Res Treat, 2013, 45(4): 251-262. [26] Stelter L, Evans M, Jungbluth AA, et al. Imaging of tumor vascularization using fluorescence molecular tomography to monitor arginine deiminase treatment in melanoma [J]. Mol Imaging, 2013, 12(11): 67-73. [27] Park IS, Kang SW, Shin YJ, et al. Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth [J]. Br J Cancer, 2003, 89(5): 907-914. [28] Feun LG, Kuo MT, Savaraj N. Arginine deprivation in cancer therapy [J]. Curr Opin Clin Nutr Metab Care, 2015, 18(1): 78-82. [29] Pavlyk I, Rzhepetskyy Y, Jagielski AK, et al. Arginine deprivation affects glioblastoma cell adhesion, invasiveness and actin cytoskeleton organization by impairment of beta-actin arginylation [J]. Amino Acids, 2015, 47(1): 199-212. [30] Poillet-Perez L, Xie X, Zhan L, et al. Autophagy maintains tumour growth through circulating arginine [J]. Nature, 2018, 563(7732): 569-573. [31] 管清梅, 李芳, 王芳芳. 脯氨酸-水二聚体分子间相互作用的理论研究[J]. 阜阳师范学院学报(自然科学版), 2014, 31(3): 17-19. [32] Pandhare J, Cooper SK, Phang JM. Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor gamma-dependent and-independent mechanisms [J]. J Biol Chem, 2006, 281(4): 2044-2052. [33] Loayza-Puch F, Rooijers K, Buil LC, et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading [J]. Nature, 2016, 530(7591): 490-494. [34] Prior FG. Theoretical involvement of vitamin B6 in tumour initiation [J]. Me Hypotheses,1985, 16(4): 421-428. |
[1] | 王艳莉,冯晔,周秀耕,杨跃,吴楠,方玉,阎石,李少雷,吕超,韩超,杜松涛. 33例食管癌患者围术期补充乳清蛋白粉对术后并发症的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 64-70. |
[2] | 苑宝文,王沛,黄蔚. 组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用[J]. 山东大学学报 (医学版), 2022, 60(3): 1-12. |
[3] | 张小红,周云,杜秋莹,任慧欣,王超群. Atg7-siRNA通过调节精氨酸循环干扰食管癌ECA109细胞放疗敏感性[J]. 山东大学学报 (医学版), 2021, 59(4): 28-34. |
[4] | 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77-81. |
[5] | 李昌达,史永军,林彦良. 27-羟基胆固醇与胆固醇对裸鼠食管鳞癌和人食管癌细胞增殖的影响[J]. 山东大学学报 (医学版), 2020, 58(11): 45-52. |
[6] | 韩福燕,成士清,王召宝,鞠瑛. 食管癌患者外周血红细胞分布宽度检测的临床价值[J]. 山东大学学报(医学版), 2017, 55(7): 67-72. |
[7] | 于斐,刘少壮,仲明惟,黄鑫,焦杰,胡三元,于文滨. 基于GC-TOF-MS的结直肠癌代谢组学差异分析[J]. 山东大学学报(医学版), 2016, 54(7): 60-68. |
[8] | 张明明,安永辉,韩彩莉,张瑛琪,马明,李娜,邹长鹏. CIK细胞联合光动力治疗中晚期食管癌的疗效观察[J]. 山东大学学报(医学版), 2016, 54(1): 38-41. |
[9] | 刘连科, 邵明雯, 马兰, 孙婧, 管丹, 束永前. 食管癌伴神经内分泌分化的临床病理特点及诊断标志物[J]. 山东大学学报(医学版), 2015, 53(7): 87-91. |
[10] | 刘盈君, 张涛, 王璐, 刘佳, 常学润, 张敬悬, 薛付忠. 基于随机森林的精神分裂症血清代谢组学研究[J]. 山东大学学报(医学版), 2015, 53(2): 92-96. |
[11] | 李晓红1,胡立宽1,2,王翠红1,杜元娜1. Glu-GNPs对人肺腺癌细胞株A549放射增敏的初步探讨[J]. 山东大学学报(医学版), 2012, 50(3): 29-. |
[12] | 陈艳1,李秀梅2,王洪江3,庞作良3,李卉4,姜孝芳4,马莉莉1,谌宏鸣5,李惠武4. 新疆哈萨克族食管癌c-myc的表达及其调控机制[J]. 山东大学学报(医学版), 2011, 49(11): 135-. |
[13] | 蒋海强1,李运伦2,解君2. 基于高效液相色谱-电喷雾-飞行时间质谱联用技术的高血压病血浆代谢组学分析[J]. 山东大学学报(医学版), 2011, 49(10): 150-. |
[14] | 张萍1,刘芳2,栾力1,马道新1,王建波1,谭炳煦1,程玉峰1. Rb94联合放疗对裸鼠肺腺癌皮下移植瘤的抑制作用[J]. 山东大学学报(医学版), 2010, 48(6): 26-. |
[15] | 张好1,周英智2,刁玉涛3,李会庆3,周瑞雪4,赵德利4,雷复华4. 食管癌高发区食管炎影响因素的病例对照研究[J]. 山东大学学报(医学版), 2010, 48(10): 120-124. |
|