山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (4): 28-34.doi: 10.6040/j.issn.1671-7554.0.2020.1295
张小红1*,周云2*,杜秋莹1,任慧欣1,王超群1
ZHANG Xiaohong1*, ZHOU Yun2*, DU Qiuying1, REN Huixin1, WANG Chaoqun1
摘要: 目的 探讨siRNA干扰自噬相关基因7(Atg7)后,对ECA109细胞放疗敏感性的影响以及对精氨酸循环相关通路的调控。 方法 食管癌ECA109细胞分为Ctrl组、siRNA组、Ctrl+R8Gy组(8Gy放射剂量处理的转染Atg7-Ctrl的ECA109细胞)和siRNA+R8Gy组(8Gy放射剂量处理的转染Atg7-siRNA的ECA109细胞);采用Western blotting法分别检测各组细胞Atg7、Beclin-1、微管相关蛋白1轻链3Ⅱ(LC3Ⅱ)、精氨酸琥珀酸合成酶1(ASS1)和精氨酸琥珀酸裂解酶(ASL)蛋白的表达。CCK8实验检测精氨酸对ECA109细胞的影响,绘制不同浓度(0、8、16、32、64、128 mmol/L)精氨酸处理下的细胞存活曲线,并计算其IC50和IC10,将IC10作为后续实验的作用浓度。采用精氨酸和siRNA分别处理细胞,对细胞进行8Gy照射,24 h后通过计算细胞数量评估细胞的死亡率。 结果 无论放疗前后,siRNA干扰均可使细胞的Atg7蛋白下调(P<0.01)。与Ctrl组相比,Ctrl+R8Gy组自噬相关蛋白Beclin-1和LC3Ⅱ上调(P<0.01);与Ctrl+R8Gy组相比,siRNA+R8Gy组自噬相关蛋白Beclin-1和LC3Ⅱ下调(P<0.01)。与Ctrl+R8Gy组相比,siRNA+R8Gy组精氨酸循环相关通路蛋白ASS1和ASL上调(P<0.01)。精氨酸对ECA109细胞具有增殖抑制作用,且呈浓度和时间依赖性。放疗后24 h,细胞死亡量分析显示, siRNA干扰可以提高细胞死亡率(F=73.59,P<0.001),添加精氨酸可以提高细胞死亡率(F=158.72,P<0.001),siRNA和精氨酸同时作用时细胞死亡率最高(F=7.88,P=0.02)。 结论 放疗可以诱导ECA109细胞发生自噬,Atg7敲低可以拮抗放疗诱导的自噬,提高放疗诱导的ECA109细胞死亡率,增加ECA109细胞对放疗的敏感性。Atg7敲低可以调控ECA109细胞放疗后精氨酸循环相关通路蛋白,提高精氨酸浓度增加ECA109细胞的放射敏感性。
中图分类号:
[1] Huang P, Sun LY, Zhang YQ. A hopeful natural product, pristimerin, induces apoptosis, cell cycle arrest, and autophagy in esophageal cancer cells [J]. Anal Cell Pathol(Amst), 2019, 2019: 6127169. doi: 10.1155/2019/6127169. [2] van Meerten E, van der Gaast A. Systemic treatment for oesophageal cancer [J]. Eur J Cancer, 2005, 41(5): 664-672. [3] Ma H, Zheng S, Zhang X, et al. High mobility group box 1 promotes radioresistance in esophageal squamous cell carcinoma cell lines by modulating autophagy [J]. Cell Death Dis, 2019, 10(2): 136. [4] Shi Y, Zhang B, Feng X, et al. Apoptosis and autophagy induced by DVDMs-PDT on human esophageal cancer Eca-109 cells [J]. Photodiagnosis Photodyn Ther, 2018, 24: 198-205. doi: 10.1016/j.pdpdt.2018.09.013. [5] Sharma NK, Sarode SC, Sarode GS, et al. Starvation in cancer cells: circulating arginine is good for cancer but bad for patients [J]. Expert Rev Anticancer Ther, 2019, 19(6): 455-459. [6] García-Navas R, Munder M, Mollinedo F. Depletion of L-arginine induces autophagy as a cytoprotective response to endoplasmic Reticulum stress in human T lymphocytes [J]. Autophagy, 2012, 8(11): 1557-1576. [7] Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine [J]. EMBO J, 2017, 36(10): 1302-1315. [8] Wu GY, Wu ZL, Dai ZL, et al. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans [J]. Amino Acids, 2013, 44(4): 1107-1113. [9] Shen LJ, Lin WC, Beloussow K, et al. Resistance to the anti-proliferative activity of recombinant arginine deiminase in cell culture correlates with the endogenous enzyme, argininosuccinate synthetase [J]. Cancer Lett, 2003, 191(2): 165-170. [10] Shen LJ, Beloussow K, Shen WC. Modulation of arginine metabolic pathways as the potential anti-tumor mechanism of recombinant arginine deiminase [J]. Cancer Lett, 2006, 231(1): 30-35. [11] Feun LG, Kuo MT, Savaraj N. Arginine deprivation in cancer therapy[J]. Curr Opin Clin Nutr Metab Care, 2015, 18(1): 78-82. [12] Patil MD, Bhaumik J, Babykutty S, et al. Arginine dependence of tumor cells: targeting a chink in cancers armor [J]. Oncogene, 2016, 35(38): 4957-4972. [13] Cao Y, Feng Y, Zhang Y, et al. L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo [J]. BMC Cancer, 2016, 16: 343. doi: 10.1186/s12885-016-2376-0. [14] Jahani M, Azadbakht M, Rasouli H, et al. L-arginine/5-fluorouracil combination treatment approaches cells selectively: Rescuing endothelial cells while killing MDA-MB-468 breast cancer cells [J]. Food Chem Toxicol, 2019, 123: 399-411. doi: 10.1016/j.fct.2018.11.018. [15] Geiger R, Rieckmann JC, Wolf T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity [J]. Cell, 2016, 167(3): 829-842. [16] Bahl R, Arora S, Nath N, et al. Novel polymorphism in p21(waf1/cip1)cyclin dependent kinase inhibitor gene: association with human esophageal cancer [J]. Oncogene, 2000, 19(3): 323-328. [17] 章海容, 张小红, 王超群. 哺乳动物雷帕霉素靶蛋白通路调控ECA109细胞放疗敏感性的代谢组学[J]. 山东大学学报(医学版), 2020, 58(1): 6-12. ZHANG Hairong, ZHANG Xiaohong, WANG Chaoqun. A metabonomic study on mTOR pathway regulating radiosensitivity of ECA109 cells[J]. Journal of Shandong University(Health Sciences), 2020, 58(1): 6-12. [18] Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis [J]. Cell, 2005, 120(2): 237-248. [19] Apel A, Herr I, Schwarz H, et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy [J]. Cancer Res, 2008, 68(5): 1485-1494. [20] Benzina S, Altmeyer A, Malek F, et al. High-LET radiation combined with oxaliplatin induce autophagy in U-87 glioblastoma cells [J]. Cancer Lett, 2008, 264(1): 63-70. [21] Brech A, Ahlquist T, Lothe RA, et al. Autophagy in tumour suppression and promotion [J]. Mol Oncol, 2009, 3(4): 366-375. [22] Chen YS, Song HX, Lu Y, et al. Autophagy inhibition contributes to radiation sensitization of esophageal squamous carcinoma cells [J]. Dis Esophagus, 2011, 24(6): 437-443. [23] 陆怡, 濮丽英, 周利群, 等. 免疫营养在恶性肿瘤治疗中的研究现状及进展[J]. 现代肿瘤医学, 2017, 25(22): 3722-3726. LU Yi, PU Liying, ZHOU Liqun, et al. Present status and progress of immunonutrition in the treatment of malignant tumor [J]. Journal of Modern Oncology, 2017, 25(22): 3722-3726. [24] Lee HY, Mohammed KA, Goldberg EP, et al. Arginine-conjugated albumin microspheres inhibits proliferation and migration in lung cancer cells [J]. Am J Cancer Res, 2013, 3(3): 266-277. [25] Li X, Wenes M, Romero P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy [J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441. [26] Stasyk OV, Boretsky YR, Gonchar MV, et al. Recombinant arginine-degrading enzymes in metabolic anticancer therapy and bioanalytics [J]. Cell Biol Int, 2015, 39(3): 246-252. [27] Kuo MT, Savaraj N, Feun LG. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes [J]. Oncotarget, 2010, 1(4): 246-251. [28] Li Y, Zeng X, Wang S, et al. Blocking autophagy enhanced leukemia cell death induced by recombinant human arginase [J]. Tumour Biol, 2016, 37(5): 6627-6635. |
[1] | 王艳莉,冯晔,周秀耕,杨跃,吴楠,方玉,阎石,李少雷,吕超,韩超,杜松涛. 33例食管癌患者围术期补充乳清蛋白粉对术后并发症的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 64-70. |
[2] | 田辉,易文波,李树海. 达芬奇机器人食管癌切除术之齐鲁实践[J]. 山东大学学报 (医学版), 2022, 60(11): 28-32. |
[3] | 韩丁培,严越,曹羽钦,孙昕,胡琰霞,汪敏娴,罗艳,施咏梅,谢青,杭钧彪,李鹤成. 加速康复外科理念在胸外科临床实践指导的瑞金医院专家共识[J]. 山东大学学报 (医学版), 2022, 60(11): 11-16. |
[4] | 孙振国,田辉. 加速康复外科指导下微创食管癌切除术流程优化之齐鲁实践[J]. 山东大学学报 (医学版), 2022, 60(11): 33-37. |
[5] | 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77-81. |
[6] | 李昌达,史永军,林彦良. 27-羟基胆固醇与胆固醇对裸鼠食管鳞癌和人食管癌细胞增殖的影响[J]. 山东大学学报 (医学版), 2020, 58(11): 45-52. |
[7] | 章海容, 张小红, 王超群. 哺乳动物雷帕霉素靶蛋白通路调控ECA109细胞放疗敏感性的代谢组学[J]. 山东大学学报 (医学版), 2020, 58(1): 6-12. |
[8] | 韩福燕,成士清,王召宝,鞠瑛. 食管癌患者外周血红细胞分布宽度检测的临床价值[J]. 山东大学学报(医学版), 2017, 55(7): 67-72. |
[9] | 李昌,张倩,马芳,解奇,常晓天. PADI2与人多种肿瘤的遗传易感性的关系[J]. 山东大学学报(医学版), 2017, 55(11): 47-53. |
[10] | 陈东,马专昌,李博,孙鼎琪,张克勤,张辉,傅强. EGCG对老龄大鼠阴茎组织中PRMT1、DDAH、ADMA、NOS通路的影响[J]. 山东大学学报(医学版), 2016, 54(5): 17-22. |
[11] | 张明明,安永辉,韩彩莉,张瑛琪,马明,李娜,邹长鹏. CIK细胞联合光动力治疗中晚期食管癌的疗效观察[J]. 山东大学学报(医学版), 2016, 54(1): 38-41. |
[12] | 刘连科, 邵明雯, 马兰, 孙婧, 管丹, 束永前. 食管癌伴神经内分泌分化的临床病理特点及诊断标志物[J]. 山东大学学报(医学版), 2015, 53(7): 87-91. |
[13] | 周静, 常晓天, 周婷, 崔莹莹, 张蓓, 荣风年. 沉默PADI4基因对卵巢癌细胞系OVCAR3的作用[J]. 山东大学学报(医学版), 2015, 53(6): 48-53. |
[14] | 赖小航, 杨沛华. 不同血液透析模式对 外周血非对称性二甲基精氨酸及血压的影响[J]. 山东大学学报(医学版), 2014, 52(S2): 25-26. |
[15] | 周静, 郑亚冰, 闫莉, 常晓天, 赵珊, 荣风年. 雌激素及顺铂对卵巢癌细胞A2780PADI4的表达及其细胞增殖的影响[J]. 山东大学学报(医学版), 2014, 52(12): 30-34. |
|