山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (3): 65-74.doi: 10.6040/j.issn.1671-7554.0.2019.1369
何天齐1,2,李敏3,王雪楠3,王亚楠3,李玉川3,孙爽3,赵海龙1,2,王皓2,陈大典3,朱梅佳2,王晓军2,王敏3,李秀华2
HE Tianqi1,2, LI Min3, WANG Xuenan3, WANG Yanan3, LI Yuchuan3, SUN Shuang3, ZHAO Hailong1,2, WANG Hao2, CHEN Dadian3, ZHU Meijia2, WANG Xiaojun2, WANG Min3, LI Xiuhua2
摘要: 目的 探讨腺相关病毒(AAV2/9-GFP)在丘脑束旁核-纹状体通路中的神经元投射及其对组织的影响。 方法 成年雄性Wistar大鼠136只,立体定位实验随机分为丘脑束旁核(PF)组(n=64)、背外侧纹状体(DLS)组(n=64)、PF对照组(n=4)和DLS对照组(n=4);在立体定位实验的基础上进行行为学实验,分为PF行为学组(n=12)和行为学对照组(n=4);立体定位实验结束后进行神经元计数实验,分为PF计数组(n=16)、DLS计数组(n=16)、PF计数对照组(n=4)和DLS计数对照组(n=4)。将不同剂量的AAV2/9-GFP立体定位注射至PF组和DLS组,转染不同时间,分析AAV2/9-GFP在PF和DLS内的转染效率,筛选出最佳剂量和转染时间。观察PF和DLS被转染的神经元以及两核团之间的神经元投射通路。分析大鼠行为学变化以及神经元的数量和形态变化。采用SPSS Statistics 21.0软件进行统计学分析。 结果 随着转染剂量和时间的增加,PF光密度值增大(F剂量=55.617,P<0.001;F时间=65.288,P<0.001)、转染面积增加(F剂量=202.443,P<0.001;F时间=224.064,P<0.001),呈上升趋势。随着转染剂量和时间的增加,DLS光密度值增大(F剂量=117.062,P<0.001;F时间=155.792,P<0.001)、转染面积增加(F剂量=240.422,P<0.001;F时间=304.571,P<0.001),呈上升趋势。病毒转染PF的最佳剂量为0.4 μL,最佳时间为4周;转染DLS的最佳剂量为0.6 μL,最佳时间为4周。AAV2/9-GFP注射至PF时,可见投射至背外侧纹状体、运动皮层、岛叶;注射至DLS时,可见投射至运动皮层、底丘脑核、束旁核、黑质。AAV2/9-GFP对神经元有损伤,表现为神经元数量减少(P<0.05),形态不规则,胞体变大,核仁及尼氏小体染色变浅。 结论 丘脑束旁核(PF)与背外侧纹状体(DLS)存在着密切的纤维联系,并且与皮层、底丘脑核和黑质等联系广泛。AAV2/9-GFP是一种有效的神经示踪剂但对神经元有一定程度的损伤,提示临床应用时应谨慎。
中图分类号:
[1] | Womelsdorf T, Valiante TA, Sahin NT, et al. Dynamic circuit motifs underlying rhythmic gain control, gating and integration [J]. Nat Neurosci, 2014, 17(8): 1031-1039. |
[2] | Blessing D, Déglon N. Adeno-associated virus and lentivirus vectors: a refined toolkit for the central nervous system [J]. Curr Opin Virol, 2016, 21: 61-66. doi: 10.1016/j.coviro.2016.08.004. |
[3] | Hocquemiller M, Giersch L, Audrain M, et al. Adeno-associated virus-based gene therapy for CNS diseases [J]. Hum Gene Ther, 2016, 27(7): 478-496. |
[4] | 周斌, 胡镐申, 陈玲敏, 等. 腺相关病毒介导的小鼠发育期大脑中的特定细胞和特定脑区的基因编辑及潜在应用探索[J]. 临床和实验医学杂志, 2019, 18(3):225-229. ZHOU Bin, HU Haoshen, CHEN Lingmin, et al. Adeno-associated virus mediated cellular and regional specific gene editing and the potential applications in the developmental brain of mice [J]. Journal of Clinical and Experimental Medicine, 2019, 18(3): 225-229. |
[5] | 李冬晓, 刘崇, 郭艳苏. 腺相关病毒在中枢神经系统的转导与表达特性[J]. 脑与神经疾病杂志, 2016, 24(5): 322-327. |
[6] | Chan KY, Jang MJ, Yoo BB, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems [J]. Nature Neurosci, 2017, 20(8): 1172-1179. |
[7] | Galvan A, Devergnas A, Wichmann T. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state [J]. Front Neuroanat, 2015, 9: 5. doi: 10.3389/fnana.2015.00005. |
[8] | Calabresi P, Picconi B, Tozzi A, et al. Direct and indirect pathways of basal ganglia: a critical reappraisal [J]. Nat Neurosci, 2014, 17(8): 1022-1030. |
[9] | Cowan WM, Powell TP. A study of thalamo-striate relations in the monkey [J]. Brain, 1956, 79(2): 364-390. |
[10] | Villalba RM, Wichmann T, Smith Y. Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinsons disease [J]. Brain Struct Funct, 2014, 219(1): 381-394. |
[11] | Kusnoor SV, Bubser M, Deutch AY. The effects of nigrostriatal dopamine depletion on the thalamic parafascicular nucleus [J]. Brain Res, 2012, 1446: 46-55. doi: 10.1016/j.brainres.2012.01.040. |
[12] | Parent M, Parent A. Single-axon tracing and three-dimensional reconstruction of centre median-parafascicular thalamic neurons in primates [J]. J Comp Neurol, 2005, 481(1): 127-144. |
[13] | Paxinos G, Watson CR, Emson PC. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates [J]. J Neurosci Methods, 1980, 3(2): 129-149. |
[14] | Murlidharan G, Samulski RJ, Asokan A. Biology of adeno-associated viral vectors in the central nervous system [J]. Front Mol Neurosci, 2014, 7: 76. doi: 10.3389/fnmol.2014.00076. |
[15] | Ojala DS, Amara DP, Schaffer DV. Adeno-associated virus vectors and neurological gene therapy [J]. Neuroscientist, 2015, 21(1): 84-98. |
[16] | Naldini, Luigi. Gene therapy returns to centre stage [J]. Nature, 2015, 526(7573): 351-360. |
[17] | Tervo DG, Hwang BY, Viswanathan S, et al. A designer AAV variant permits efficient retrograde access to projection neurons [J]. Neuron, 2016, 92(2): 372-382. |
[18] | Gray SJ, Matagne V, Bachaboina L, et al. Preclinical differences of intravascular AAV9 delivery to neurons and glia: A comparative study of adult mice and nonhuman primates [J]. Mol Ther, 2011, 19(6): 1058-1069. |
[19] | Samaranch L, Salegio EA, San Sebastian W, et al. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates [J]. Hum Gene Ther, 2013, 24(5): 526-532. |
[20] | 陆元喜. 重组9型腺相关病毒载体通过不同方法转染SD大鼠心肌转染效率及安全性研究[D]. 南宁: 广西医科大学, 2017. |
[21] | Zhang H, Yang J, Wang X, et al. Altered local field potential relationship between the parafascicular thalamic nucleus and dorsal striatum in hemiparkinsonian rats [J]. Neurosci Bull, 2019, 35(2): 315-324. |
[22] | Zhang H, Yang J, Xiang T, et al. State-dependent spike and local field synchronization between the thalamic parafascicular nucleus and the dorsal striatum in a rat model of Parkinsons disease [J]. Neuroscience, 2019, 404: 27-38. doi: 10.1016/j.neuroscience.2019.01.055. |
[23] | Parent M, Parent A. Single-axon tracing and three-dimensional reconstruction of centre médian-parafascicular thalamic neurons in primates [J]. J Comp Neurol, 2005, 481(1): 127-144. |
[24] | Galvan A, Smith Y. The primate thalamostriatal systems: Anatomical organization, functional roles and possible involvement in Parkinsons disease [J]. Basal Ganglia, 2011, 1(4): 179-189. |
[25] | Samaranch L, Sebastian WS, Kells AP, et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction [J]. Mol Ther, 2014, 22(2): 329-337. |
[26] | Löw K, Aebischer P, Schneider BL.Direct and retrograde transduction of nigral neurons with AAV6, 8, and 9 and intraneuronal persistence of viral particles [J]. Hum Gene Ther, 2013, 24(6): 613-629. |
[1] | 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-. |
[2] | 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-. |
[3] | 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-. |
[4] | 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32. |
[5] | 邹品衡,陈添果,胡康,李伟才. 过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制[J]. 山东大学学报 (医学版), 2022, 60(9): 59-66. |
[6] | 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29. |
[7] | 袁孟绮,霍凤蕾,任会萍,郭秋爽,蓝菁. Sdccag3通过Wnt通路对高脂血症大鼠种植体骨结合的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 66-73. |
[8] | 相宇娇,刘强,刘璐,石艳. 原发免疫性血小板减少症树突状细胞异常免疫反应机制[J]. 山东大学学报 (医学版), 2022, 60(7): 89-97. |
[9] | 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7. |
[10] | 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30. |
[11] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
[12] | 张正铎,吴虹,祁少俊,唐延金,高希宝. 口服5-甲基四氢叶酸对大鼠阿尔茨海默病的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 13-23. |
[13] | 赵慧文,许琳,单姗,赵秀兰. 牛磺酸对1-溴丙烷致大鼠认知功能障碍的保护作用[J]. 山东大学学报 (医学版), 2022, 60(2): 14-21. |
[14] | 王芳,陈华,商丽红,李茹月,李咏梅,杨玉娥,哈春芳. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(9): 148-154. |
[15] | 郭曼,刘鹏,龙麟. 防纤汤对放射性肺炎大鼠的影响及作用机制[J]. 山东大学学报 (医学版), 2021, 59(8): 53-60. |
|