您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (3): 75-80.doi: 10.6040/j.issn.1671-7554.0.2019.1510

• • 上一篇    下一篇

达格列净通过Klotho/TGF-β1通路抑制糖尿病肾病大鼠肾纤维化的作用

丁华琳1,李扬扬2,于丰源1,战伟伟1,于苏国1   

  1. 滨州医学院附属医院 1.内分泌科;2.病理科, 山东 滨州 256603
  • 出版日期:2020-03-10 发布日期:2022-09-27
  • 通讯作者: 于苏国. E-mail:yusuguo@sina.com

Daglixamine inhibits renal fibrosis in rats with diabetic nephropathy via Klotho/TGF-β1 signaling pathway

DING Hualin1, LI Yangyang2, YU Fengyuan1, ZHAN Weiwei1, YU Suguo1   

  1. 1. Department of Endocrinology;
    2. Department of Pathology, Affiliated Hospital of Binzhou Medical College, Binzhou 256603, Shandong, China
  • Online:2020-03-10 Published:2022-09-27

摘要: 目的 探讨达格列净对糖尿病相关性肾病大鼠(DN)肾纤维化的影响及机制。 方法 雄性SD大鼠20只,随机分为正常组、模型组、二甲双胍组和达格列净组,每组5只,造模成功后分组进行干预,12周后检测各组大鼠肾功能指标,包括血尿素氮(BUN)、血清肌酐(Scr)以及24 h蛋白尿,HE染色进行组织学观察分析,采用ELISA法及免疫组化方法检测大鼠血清及肾脏组织中克洛索蛋白、转化生长因子-β1水平。 结果 模型组大鼠血BUN、Scr、24 h 尿蛋白较正常组均明显升高(P<0.01);二甲双胍组大鼠血 BUN、Scr、24 h尿蛋白较模型组均降低(P<0.05);达格列净组大鼠血BUN、Scr、24 h尿蛋白低于二甲双胍组(P<0.05)。模型组大鼠肾小管损伤程度较正常组加重(9.4±0.55 vs 2.8±1.00,P<0.01);二甲双胍组大鼠肾小管损伤程度较模型组减轻(7.0±0.90 vs 9.4±0.55,P<0.05);达格列净组肾小管损伤程度较二甲双胍组减轻(5.6±1.0 vs 7.0±0.90,P<0.05)。与正常组比,模型组大鼠血清及肾组织中Klotho蛋白低表达,转化生长因子-β1(TGF-β1)高表达;与模型组比,二甲双胍组大鼠血清及肾组织中Klotho蛋白高表达,TGF-β1低表达;达格列净组大鼠血清及肾组织中Klotho蛋白水平高于二甲双胍组,TGF-β1水平低于二甲双胍组,差异均有统计学意义(P<0.05)。 结论 达格列净通过上调Klotho蛋白抑制TGF-β1介导的纤维化信号传导,延缓糖尿病相关性肾病大鼠肾纤维化。

关键词: 达格列净, 克洛索蛋白, 转化生长因子-β1, 糖尿病肾病, 纤维化信号传导, SD大鼠

Abstract: Objective To investigate the effect of daglicaten on renal fibrosis in rats with diabetes-related nephropathy(DN)and to explore the possible mechanism. Methods A total of 20 male SD rats were randomly divided into the normal control group, model group, metformin group and daglipetide group, with 5 rats in each group. After models were established, the rats were divided into different groups for intervention. The renal function indexes were detected after 12 weeks, including blood urea nitrogen(BUN), serum creatinine(Scr)and 24-hour urine protein(24 h UP). The morphological changes were observed with HE staining. The expressions of Klotho protein and transforming growth factor β1(TGF-β1)in serum and kidney tissues were detected with ELISA and immunohistochemistry. Results The model group had significantly higher BUN, Scr, and 24 h UP than the normal control group(P<0.01); the metformin group had significantly lower BUN, Scr, and 24 h UP than the model group(P<0.05); the dagalegrin group had lower BUN, Scr, and 24 h UP than the metformin group(P<0.05). The model group had worse renal tubular injury than the normal group(9.4±0.55 vs 2.8±1.00, P<0.01); the metformin group had less renal tubular injury than the model group 山 东 大 学 学 报 (医 学 版)58卷3期 -丁华琳,等.达格列净通过Klotho/TGF-β1通路抑制糖尿病肾病大鼠肾纤维化的作用 \=-(7.0±0.90 vs 9.4±0.55, P<0.05); the daglicaten group had less renal tubular injury than the metformin group(5.6±1.0 vs 7.0±0.90, P<0.05). The model group had lower Klotho protein but higher TGF-β1 levels than the normal control group; the metformin group had higher Klotho protein but lower TGF-β1 levels than the model group; the daglicaten group had higher Klotho protein but lower TGF-β1 levels than the metformin group; all differences were statistically significant(P<0.05). Conclusion Daglipine inhibits TGF-β1-mediated fibrosis signaling by up-regulating Klotho protein expression and thus attenuates renal fibrosis in rats with diabetes-related nephropathy.

Key words: Daglipine, Klotho protein, Transforming growth factor β1, Diabetic nephropathy, Fibrosis signal transduction, SD rats

中图分类号: 

  • R587.2
[1] 朱辟疆. 肾脏纤维化与抗纤维化治疗研究[J]. 中国中西医结合肾病杂志, 2004, 5(2): 114-117.
[2] Li Y, Li L, Zeng O, et al. HS improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF-β1 expression [J]. Ren Fail, 2017, 39(1): 265-272.
[3] Cho NJ, Han DJ, Lee JH, et al. Soluble klotho as a marker of renal fibrosis and podocyte injuries in human kidneys [J]. PLoS One, 2018, 13(3): e0194617. doi:10.1371/journal.pone.0194617.
[4] Xue J, Wang L, Sun Z, et al. Basic research in diabetic nephropathy health care: a study of the renoprotective mechanism of metformin [J]. J Med Syst, 2019, 43(8): 266.
[5] Shen Y, Miao N, Xu J. Metformin prevents renal fibrosis in mice with unilateral ureteral obstruction and inhibits ang II-induced ECM production in renal fibroblasts [J]. Int J Mol Sci, 2016, 17(2): 146.
[6] Rajasekeran H, Lytvyn Y. Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis [J]. Kidney Int, 2016, 89(3): 524-526.
[7] Elsherbiny NM, El-Sherbiny M. Amelioration of experimentally induced diabetic nephropathy and renal damage by nilotinib [J]. Physiol Biochem, 2015, 71(4): 635-648.
[8] Goujon JM, Hauet T, Menet E, et al. Histological evaluation of proximal tubule cell injury in isolated perfused pig kidneys exposed to cold ischemia [J]. J Surg Res, 1999, 82(2): 228-233.
[9] Torsello B, Bianchi C, Meregalli C, et al. Correction: Arg tyrosine kinase modulates TGF-β1 production in human renal tubular cells under high-glucose conditions [J]. J Cell Sci, 2019, 132(19): 2925-2936.
[10] Lu Q, Wang WW, Zhang MZ, et al. ROS induces epithelial-mesenchymal transition via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy [J]. Exp Ther Med, 2019, 17(1): 835-846.
[11] 洪郁之, 俞东容, 朱斌, 等. 雷公藤内酯醇对糖尿病肾内高压牵张系膜细胞模型细胞因子表达的抑制[J]. 中华糖尿病杂志, 2005, 13(6): 467-468.
[12] Tang F, Hao Y, Zhang X. Effect of echinacoside on kidney fibrosis by inhibition of TGF-β1/Smads signaling pathway in the db/db mice model of diabetic nephropathy [J]. Drug Des Devel Ther, 2017, 11(3): 2813-2826.
[13] Higgins SP,Tang Y, Higgins CE, et al. TGF-β1/p53 signaling in renal fibrogenesis [J]. Cell Signal, 2018, 43: 1-10. doi:10.1016/j.cellsig.2017.11.005.
[14] Lee HJ, Gonzalez O, Dick EJ, et al. Marmoset as a model to study kidney changes associated with aging [J]. J Gerontol A Biol Sci Med Sci, 2019, 74(3): 315-324.
[15] 缪静龙, 刘其锋. Klotho抑制肾间质纤维化的作用及机制[J]. 医学综述, 2019, 25(20): 3985-3990.
[16] Yin S, Zhang Q, Yang J, et al. TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis [J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(7): 1207-1216.
[17] Huang JS, Chuang CT, Liu MH, et al. Klotho attenuates high glucose-induced fibronectin and cell hypertrophy via theERK1/2-p38 kinase signaling pathway in renal interstitial fibroblasts [J]. Mol Cell Endocrinol, 2014, 390(1/2): 45-53.
[18] Irifuku T, Doi S, Sasaki K, et al. Inhibition of H3K9 histone methyltransferase G9a attenuates renal fibrosis and retains klotho expression [J]. Kidney Int, 2016, 89(1): 147-157.
[19] Fu B, Yang J, Chen J, et al. Preventive effect of Shenkang injection against high glucose-induced senescence of renal tubular cells [J]. Front Med, 2019, 13(2): 267-276.
[20] Ding J, Tang Q, Luo B, et al. Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway [J]. European journal of pharmacology, 2019, 859: 172549. doi: 10.1016/j.ejphar.2019.172549.
[21] Vancura A, Bu P, Bhagwat M, et al. Metformin as an Anticancer Agent [J]. Trends Pharmacol Sci, 2018, 39(10): 867-878.
[22] 薛婧. 二甲双胍对糖尿病肾病的肾保护作用机制[D]. 南京: 南京医科大学, 2019.
[23] Yi H, Huang C, Shi Y, et al. Metformin attenuates folic-acid induced renal fibrosis in mice [J]. J Cell Physiol, 2018, 233(9): 7045-7054.
[24] Paik J. Dapagliflozin: A Review in Type 1 Diabetes [J]. Drugs, 2019, 79(17): 1877-1884.
[25] Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts [J]. Free Radic Biol Med, 2017, 104: 298-310. doi: 10.1016/j.freeradbiomed.2017.01.035.
[26] Amalia G, Enrico R, Cristian G, et al. Exenatide and dapagliflozin combination improves markers of liver steatosis and fibrosis in patients with type 2 diabetes [J]. Diabetes Obes Metab, 2020, 22(3): 393-403.
[1] 张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇. 骨化三醇对哮喘中TGF-β1所诱导上皮间充质转化的调控作用[J]. 山东大学学报 (医学版), 2021, 59(7): 10-18.
[2] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[3] 赵位昆,吕祥威,武琦,鲁攀,彭丽,覃秋语. 6-姜酚减轻血管紧张素Ⅱ诱导的大鼠心房纤维化[J]. 山东大学学报 (医学版), 2020, 58(2): 1-6.
[4] 李雪,李栋,时庆,周盼盼,鞠秀丽. Helios在儿童急性淋巴细胞性白血病调节性T细胞中的表达及功能[J]. 山东大学学报(医学版), 2017, 55(4): 76-81.
[5] 席福立,张梅. MicroRNA-34a在心肌纤维化过程中对SH2B3的表达调控[J]. 山东大学学报(医学版), 2016, 54(2): 6-10.
[6] 陈志新,王颖,曹新冉, 黑乃豪,李俊龙,董波,关广聚. 非肽类Ang(1-7)受体激动剂AVE0991对大鼠糖尿病肾病的保护作用[J]. 山东大学学报(医学版), 2016, 54(10): 29-33.
[7] 黄艳, 旷昕, 熊花, 刘鑫, 罗晓青, 刘斌. 柴朴汤调控VEGF、TGF-β1的表达对哮喘大鼠气道重塑的影响[J]. 山东大学学报(医学版), 2014, 52(S1): 14-17.
[8] 田艳, 侯善荣, 刘建立, 孙兴盛, 黄丽红. 不同剂量阿托伐他汀对扩张性心肌病大鼠心肌TGF-β1及心脏结构的影响[J]. 山东大学学报(医学版), 2014, 52(9): 6-10.
[9] 黄静, 胥莹, 刘毅, 辛玮, 赵胥, 刘蕾, 完强. 乙酰辅酶A羧化酶2表达下调对高糖培养的人肾小管上皮细胞脂质沉积和间充质转化的影响[J]. 山东大学学报(医学版), 2014, 52(7): 16-21.
[10] 张锦航1,张鲁伟1,刘新农2,田军1. Db/db小鼠肾脏中Tribble3的表达及其与肾脏纤维化的关系[J]. 山东大学学报(医学版), 2014, 52(2): 38-43.
[11] 杨志英, 刘向春, 关广聚. 蛋氨酸亚砜还原酶B1在糖尿病小鼠肾脏中的表达变化及其与氧化应激的关系[J]. 山东大学学报(医学版), 2014, 52(10): 29-34.
[12] 毕大鹏1,嵇高德1,张洪星2 . 通心络胶囊对早期糖尿病肾病患者胱抑素C的影响[J]. 山东大学学报(医学版), 2013, 51(7): 67-69.
[13] 杜月娟1,刘元涛2,卢圣霞1,刘晔1,齐文文1,傅余芹1. 冬虫夏草菌丝对糖尿病大鼠肾脏DKK1、β-catenin表达的影响[J]. 山东大学学报(医学版), 2012, 50(6): 26-.
[14] 王杰1,常相帝1,李冰1,肖晓燕1,张扬1,甄军晖2,姜虹3,胡昭1. 霉酚酸酯对糖尿病大鼠肾小管上皮细胞转分化的影响[J]. 山东大学学报(医学版), 2012, 50(6): 14-19.
[15] 常相帝1,王杰1,李冰1,甄军晖2,姜虹3,胡昭1. FK506对早期糖尿病肾病大鼠足细胞损伤的保护作用[J]. 山东大学学报(医学版), 2012, 50(6): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!