您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (2): 1-6.doi: 10.6040/j.issn.1671-7554.0.2019.1047

• 基础医学 •    下一篇

6-姜酚减轻血管紧张素Ⅱ诱导的大鼠心房纤维化

赵位昆1,吕祥威2,武琦3,鲁攀1,彭丽1,覃秋语1   

  1. 1. 桂林医学院附属医院综合科(医疗保健病区), 广西 桂林 541001;2. 桂林医学院附属医院心血管内科二病区, 广西 桂林 541001;3. 徐州医科大学生理学教研室, 江苏 徐州 221004
  • 出版日期:2020-02-10 发布日期:2022-09-27
  • 通讯作者: 吕祥威. E-mail:lvxiangwei910@163.com
  • 基金资助:
    广西自然科学基金(2018GXNSFAA294096,2018GXNSFDA281039);广西高校中青年教师科研基础能力提升项目(2019KY0532);桂林医学院中青年教职工科研能力提升项目(2018glmcy048)

6-Gingerol reduces atrial fibrosis induced by angiotensin Ⅱ in rats

ZHAO Weikun1, LYU Xiangwei2, WU Qi3, LU Pan1, PENG Li1, QIN Qiuyu1   

  1. 1. Health Care Ward, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China;
    2. The Second Ward in Cardiovascular Department, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China;
    3. Department of Physiology, Xuzhou Medicine University, Xuzhou 221004, Jiangsu, China
  • Online:2020-02-10 Published:2022-09-27

摘要: 目的 探讨6-姜酚(6-G)对血管紧张素Ⅱ(AngⅡ)诱导大鼠心房纤维化的作用及机制。 方法 8周龄雄性SD大鼠18只,按照随机数字表法分为假手术组、模型组和6-G干预+AngⅡ组,每组6只。假手术组经尾静脉注射0.9%氯化钠注射液,2 mg/kg;模型组经尾静脉注射AngⅡ,2 mg/kg,制备心房纤维化模型;6-G干预+AngⅡ组经尾静脉注射6-G,6 mg/kg,30 min后再经尾静脉注射AngⅡ,2 mg/kg。3组持续给药14 d,1次/d。各组经超声心动图检测大鼠心功能,采用ELISA法检测心肌损伤标记物的变化,采用Masson三色染色法检测大鼠心房纤维化程度,采用Western blotting法检测大鼠心房转化生长因子-β1(TGF-β1)、Ⅰ型胶原(Collagen-Ⅰ)的表达。 结果 假手术组、模型组和6-G干预+AngⅡ组3组之间相比,左心室射血分数(LVEF)(F=1.500,P=0.255)、左心室缩短率(LVFS)(F=0.793,P=0.471)、左室收缩末期内径(LVESD)(F=0.104,P=0.902)、左室舒张末期内径(LVEDd)(P=0.566)和CK-MB(F=0.089,P=0.915)、cTnT(F=0.181,P=0.836)差异无统计学意义(P>0.05)。与假手术组相比,模型组和6-G干预+AngⅡ组心房纤维化程度增加,胶原分数(F=322.527)、TGF-β1(F=44.537)、Collagen-Ⅰ(F=45.626)表达均升高,3组之间差异有统计学意义(P<0.05)。与假手术组相比,模型组大鼠上述心功能和心肌损伤标志物无明显差异(P>0.017),心房纤维化程度增加,胶原分数、TGF-β1、Collagen-Ⅰ表达均升高,差异有统计学意义(P<0.017)。与模型组相比,6-G干预+AngⅡ组大鼠上述心功能和心肌损伤标志物差异无统计学意义(P>0.017),心房纤维化程度减轻,胶原分数、TGF-β1、Collagen-Ⅰ表达均降低,差异有统计学意义(P<0.017)。 结论 6-G可减轻AngⅡ诱导的大鼠心房纤维化,其机制可能与抑制TGF-β1的表达,减少Collagen-Ⅰ的生成有关。

关键词: 6-姜酚, 血管紧张素Ⅱ, 心房纤维化, 转化生长因子-β1, Ⅰ型胶原

Abstract: Objective To investigate the effect and mechanism of 6-Gingerol(6-G)on atrial fibrosis induced by angiotensin Ⅱ(Ang II)in rats. Methods Eighteen 8-week-old male SD rats were randomly divided into sham operation group, model group, and 6-G intervention + Ang II group, with 6 rats in each group. Rats in sham operation group received 2 mg/kg 0.9% sodium chloride injection in the tail vein. Rats in model group received 2 mg/kg AngⅡ injection 山 东 大 学 学 报 (医 学 版)58卷2期 -赵位昆,等.6-姜酚减轻血管紧张素Ⅱ诱导的大鼠心房纤维化 \=-to induce atrial fibrosis. Rats in 6-G intervention + AngⅡ group received 6 mg/kg 6-G injection, and then 2 mg/kg Ang II injection after 30 min. Drugs were continuously administered for 14 days, once a day. The cardiac function was observed with echocardiography, changes of myocardial injury markers were determined with ELISA, degree of atrial fibrosis was measured with Massons trichrome staining, and TGF-β1 and collagen-Ⅰ expressions were detected with Western blotting. Results There were no statistically significant differences in LVEF(F=1.500, P=0.255), LVFS(F=0.793, P=0.471), LVESD(F=0.104, P=0.902), LVEDd(P=0.566)CK-MB(F=0.089, P=0.915), and cTnT(F=0.181, P=0.836)among the three groups(P>0.05). Compared with sham operation group, the model group and 6-G intervention + Ang II group had severer atrial fibrosis, elevated collagen fraction(F=322.527), TGF-β1(F=44.537)and Collagen-Ⅰ (F=45.626), and the differences were statistically significant(P<0.05). Compared with sham operation group, the model group had comparable cardiac function and myocardial injury markers(P>0.017), but severer atrial fibrosis, elevated collagen fraction, TGF-β1 and Collagen-I, and the differences were statistically significant(P<0.017). Compared with the model group, the 6-G intervention + AngⅡ group had no statistically different cardiac function and myocardial injury markers(P>0.017), but reduced atrial fibrosis, decreased collagen fraction, TGF-β1 and Collagen-Ⅰ, and the differences were statistically significant(P<0.017). Conclusion 6-G can improve AngⅡ-induced atrial fibrosis by inhibiting TGF-β1 and Collagen-Ⅰ expressions.

Key words: 6-Gingerol, Angiotensin Ⅱ, Atrial Fibrosis, Transforming growth factor β1, Collagen type-Ⅰ

中图分类号: 

  • R542.2
[1] Dilaveris P, Antoniou CK, Manolakou P, et al. Biomarkers associated with atrial fibrosis and remodeling [J]. Curr Med Chem, 2019, 26(5): 780-802.
[2] Yang PS, Lee SH, Park J, et al. Atrial tissue expression of receptor for advanced glycation end-products(RAGE)and atrial fibrosis in patients with mitral valve disease [J]. Int J Cardiol, 2016, 220: 1-6. doi: 10.1016/j.ijcard.2016.06.137.
[3] Brown NJ. Mineralocorticoid receptor activation and atrial fibrosis [J]. Hypertension, 2019, 73(2): 294-295.
[4] Liu Y, Niu XH, Yin X, et al. Elevated circulating fibrocytes is a marker of left atrial fibrosis and recurrence of persistent atrial fibrillation [J]. J Am Heart Assoc, 2018, 7(6): e008083.
[5] Dudley SC Jr, Hoch NE, McCann LA, et al. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases [J]. Circulation, 2005, 112(9): 1266-1273.
[6] Fan J, Zou L, Cui K, et al. Atrial overexpression of angiotensin-converting enzyme 2 improves the canine rapid atrial pacing-induced structural and electrical remodeling. Fan, ACE2 improves atrial substrate remodeling [J]. Basic Res Cardiol, 2015, 110(4): 45.
[7] Hirsh BJ, Copeland-Halperin RS, Halperin JL. Fibrotic atrial cardiomyopathy, atrial fibrillation, and thromboembolism: mechanistic links and clinical inferences [J]. J Am Coll Cardiol, 2015, 65(20): 2239-2251.
[8] 吴英智, 傅强, 严全能, 等. 姜酚在心血管疾病中的药理作用研究进展[J].中国临床药理学杂志, 2017, 33(18): 1824-1827. WU Yingzhi, FU Qiang, YAN Quanneng, et al. Research progress on pharmacological actions of gingerols in cardiovasular disease [J]. The Chinese Journal of Clinical Pharmacology, 2017, 33(18): 1824-1827.
[9] Kamato D, Babaahmadi Rezaei H, Getachew R, et al.(S)-
[6] -Gingerol inhibits TGF-β-stimulated biglycan synthesis but not glycosaminoglycan hyperelongation in human vascular smooth muscle cells [J]. J Pharm Pharmacol, 2013, 65(7): 1026-1036.
[10] Liu Q, Liu J, Guo H, et al. 6-Gingerol: A novel AT1 antagonist for the treatment of cardiovascular disease [J]. Planta Med, 2013, 79(5): 322-326.
[11] Xu T, Qin G, Jiang W, et al. 6-Gingerol protects heart by suppressing myocardial ischemia/reperfusion induced inflammation via the PI3K/Akt-dependent mechanism in rats [J]. Evid Based Complement Alternat Med, 2018, 2018: 1-9. doi: 10. 1155/2018/6209679.
[12] 吕祥威, 徐彤彤. 6-姜酚抑制氧化应激减轻大鼠心肌缺血/再灌注损伤[J]. 临床心血管病杂志, 2017, 33(6): 575-579. LV Xiangwei, XU Tongtong. 6-Gingerol inhibits oxidative stress ameliorated myocardial ischemia/reperfusion injury in rats [J]. Journal of Clinical Cardiology, 2017, 33(6): 575-579.
[13] Lv X, Xu T, Wu Q, et al. 6-Gingerol activates PI3K/Akt and inhibits apoptosis to attenuate myocardial ischemia/reperfusion injury [J]. Evid Based Complement Alternat Med, 2018, 2018: 1-9. doi: 10. 1155/2018/9024034.
[14] Fukui A, Takahashi N, Nakada C, et al. Role of leptin signaling in the pathogenesis of angiotensin II-mediated atrial fibrosis and fibrillation [J]. Circ Arrhythm Electrophysiol, 2013, 6(2): 402-409.
[15] Wang R, Yi X, Li X, et al. Fibroblast growth factor-21 is positively associated with atrial fibrosis in atrial fibrillation patients with rheumatic heart disease [J]. Int J Clin Exp Pathol, 2015, 8(11): 14901-14908.
[16] Corradi D. Atrial fibrillation from the pathologists perspective [J]. Cardiovasc Pathol, 2014, 23(2): 71-84.
[17] Dzeshka MS, Lip GY, Snezhitskiy V, et al. Cardiac fibrosis in patients with atrial fibrillation: mechanisms and clinical implications [J]. J Am Coll Cardiol, 2015, 66(8): 943-959.
[18] 方曙, 钟国强, 蒋智渊, 等. 转化生长因子-βⅢ型受体在心房颤动心肌纤维化表达[J]. 临床心血管病杂志, 2016, 32(6): 555-558. FANG Shu, ZHONG Guoqiang, JIANG Zhiyuan, et al. Expression of transforming growth factor beta type Ⅲ receptor in human atrial myocardium of atrial fibrillation patient[J]. Journal of Clinical Cardiology, 2016, 32(6): 555-558.
[19] Chen XQ, Liu X, Wang QX, et al. Pioglitazone inhibits angiotensin II-induced atrial fibroblasts proliferation via NF-κB/TGF-β1/TRIF/TRAF6 pathway [J]. Exp Cell Res, 2015, 330(1): 43-55.
[20] Tian Y, Wang Y, Chen W, et al. Role of serum TGF-β1 level in atrial fibrosis and outcome after catheter ablation for paroxysmal atrial fibrillation [J]. Medicine(Baltimore), 2017, 96(51): e9210.
[21] Polejaeva IA, Ranjan R, Davies CJ, et al. Increased susceptibility to atrial fibrillation secondary to atrial fibrosis in transgenic goats expressing transforming growth factor-β1 [J]. J Cardiovasc Electrophysiol, 2016, 27(10): 1220-1229.
[22] Kupfahl C, Pink D, Friedrich K, et al. Angiotensin II directly increases transforming growth factor beta1 and osteopontin and indirectly affects collagen mRNA expression in the human heart [J]. Cardiovasc Res, 2000, 46(3): 463-475.
[23] Zhang L, Zhang N, Tang X, et al. Increased α-actinin-2 expression in the atrial myocardium of patients with atrial fibrillation related to rheumatic heart disease[J]. Cardiology, 2016, 135(3): 151-159.
[24] 刘发金, 肖骅, 唐雪娇, 等. 转化生长因子-β1对大鼠心房、心室成纤维细胞胶原表达的影响[J]. 解放军医学杂志, 2015, 40(7): 540-546. LIU Fajin, XIAO Hua, TANG Xuejiao, et al. Effect of TGF-β1 on the expression of collagen in rat atrial and ventricular fibroblasts [J]. Medical Journal of Chinese People's Liberation Army, 2015, 40(7): 540-546.
[25] Park SA, Park IH, Cho JS, et al. Effect of
[6] -gingerol on myofibroblast differentiation in transforming growth factor beta 1-induced nasal polyp-derived fibroblasts [J]. Am J Rhinol Allergy, 2012, 26(2): 97-103.
[26] Hong Y, Cao H, Wang Q, et al. MiR-22 may suppress fibrogenesis by targeting TGFβR I in Cardiac Fibroblasts [J]. Cell Physiol Biochem, 2016, 40(6): 1345-1353.
[27] Wang K, Lu D, Zhang B, et al. Renal denervation attenuates multi organ fibrosis and improves vascular remodeling in rats with transverse aortic constriction induced cardiomyopathy [J]. Cell Physiol Biochem, 2016, 40(3-4): 465-476.
[28] Aguilar H, Fricovsky E, Ihm S, et al. Role for high-glucose-induced protein O-GLcNAcylation in stimulating cardiac fibrolast collagen synthesis [J]. Am J Physiol Cell Physiol, 2014, 306(9): 794-804.
[1] 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29.
[2] 孟婷婷,王淑亚,吴会会,陈嘉敏,郑燕,李莹,苏国海. 脂联素通过分泌型卷曲相关蛋白2及相关通路缓解AngⅡ诱导的心肌肥厚[J]. 山东大学学报 (医学版), 2021, 59(8): 44-52.
[3] 张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇. 骨化三醇对哮喘中TGF-β1所诱导上皮间充质转化的调控作用[J]. 山东大学学报 (医学版), 2021, 59(7): 10-18.
[4] 李娜,张志勉. 138例39~81岁体检人员血管钙化指标的关联分析[J]. 山东大学学报 (医学版), 2020, 58(2): 85-89.
[5] 李雪,李栋,时庆,周盼盼,鞠秀丽. Helios在儿童急性淋巴细胞性白血病调节性T细胞中的表达及功能[J]. 山东大学学报(医学版), 2017, 55(4): 76-81.
[6] 贾佳静,王志萍. 育龄期高水平生殖激素对大鼠围绝经期及绝经后血压的影响[J]. 山东大学学报(医学版), 2017, 55(11): 7-14.
[7] 王晓琳,周元丽,孙伟,李莉. p38 MAPK信号通路调控人主动脉平滑肌细胞Ⅰ型和Ⅲ型胶原的表达[J]. 山东大学学报(医学版), 2016, 54(8): 12-16.
[8] 巨媛媛,任满意,李睿,赵萌萌,隋树建. TWEAK通过ERK1/2通路促进大鼠心肌成纤维细胞MMP2与Ⅰ型胶原表达[J]. 山东大学学报(医学版), 2016, 54(5): 23-28.
[9] 席福立,张梅. MicroRNA-34a在心肌纤维化过程中对SH2B3的表达调控[J]. 山东大学学报(医学版), 2016, 54(2): 6-10.
[10] 张锋, 戴杰, 任灵飞, 蒋颂瑶, 施更生. 纯钛钛片表面不同生物大分子涂层的比较研究[J]. 山东大学学报(医学版), 2015, 53(8): 38-43.
[11] 刘雷雷, 鞠云飞, 许文飞, 鞠远荣. 氯沙坦对大鼠内毒素性急性肺损伤的影响及可能机制[J]. 山东大学学报(医学版), 2015, 53(2): 6-11.
[12] 黄艳, 旷昕, 熊花, 刘鑫, 罗晓青, 刘斌. 柴朴汤调控VEGF、TGF-β1的表达对哮喘大鼠气道重塑的影响[J]. 山东大学学报(医学版), 2014, 52(S1): 14-17.
[13] 田艳, 侯善荣, 刘建立, 孙兴盛, 黄丽红. 不同剂量阿托伐他汀对扩张性心肌病大鼠心肌TGF-β1及心脏结构的影响[J]. 山东大学学报(医学版), 2014, 52(9): 6-10.
[14] 商睿1,2,唐梦熊2,3,刘琳1,2,丁文渊2,3,郝盼盼2,3,陈玉国2,3. ALK7在高糖诱导的心肌成纤维细胞转化及Ⅰ型胶原合成中的作用[J]. 山东大学学报(医学版), 2013, 51(8): 1-6.
[15] 杨艳1,阎春英1,陈旭2,林晓燕3,王来城4,石军1. 氯沙坦对实验性肝纤维化模型大鼠的作用[J]. 山东大学学报(医学版), 2013, 51(3): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!