您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (8): 44-52.doi: 10.6040/j.issn.1671-7554.0.2021.0228

• 基础医学 • 上一篇    下一篇

脂联素通过分泌型卷曲相关蛋白2及相关通路缓解AngⅡ诱导的心肌肥厚

孟婷婷,王淑亚,吴会会,陈嘉敏,郑燕,李莹,苏国海   

  • 出版日期:2021-08-10 发布日期:2021-09-16
  • 通讯作者: 李莹. E-mail:ly2354@zxyy.cn 苏国海. E-mail:guohaisu0531@126.com
  • 基金资助:
    国家自然科学基金(81700217);山东省自然科学基金(ZR2018MH003,ZR2016HB57);济南市医学科技创新计划(201805004,201805059);中国博士后面上项目(2019M662370);山东省博士后创新项目(202003046);国家重大新药创制科技重大专项(2020ZX09201025)

Adiponectin alleviated angiotensin II induced myocardial hypertrophy through sFRP2 and the related pathways

MENG Tingting, WANG Shuya, WU Huihui, CHEN Jiamin, ZHENG Yan, LI Ying, SU Guohai   

  1. Department of Cardiology, Afflicted Central Hospital of Shandong First Medical University, Jinan 250013, Shandong, China
  • Online:2021-08-10 Published:2021-09-16

摘要: 目的 探讨脂联素(APN)通过调控分泌型卷曲相关蛋白2(SFRP2)及相关通路对血管紧张素Ⅱ(AngⅡ)诱导的心肌肥厚的作用及机制。 方法 出生3d Wistar大鼠中分离出原代心室肌细胞(NRVMs)。采用免疫荧光法检测NRVMs的骨架蛋白α-SMA的表达。将提取的NRVMs分为空白组、1 nmol/L组、10 nmol/L组、100 nmol/L组、500 nmol/L组,检测不同浓度AngⅡ对NRVMs的作用。将NRVMs分为空白组、AngⅡ组、APN+AngⅡ组、AngⅡ+APN+si-sFRP2组、AngⅡ+APN+LiCl组、APN组、SP600125+AngⅡ组以及SB203580+AngⅡ组检测APN对AngⅡ作用的影响。采用Western blotting法检测各组细胞sFRP2的表达量以及Wnt/β-catenin、p38/JNK通路的激活。采用qPCR法检测各组细胞心肌肥厚相关指标以及sFRP2的表达水平。 结果 在NRVMs中加入AngⅡ24 h后,与空白组相比,1 nmol/L组、10 nmol/L组、100 nmol/L组、500 nmol/L组ANP、BNP的表达升高(FANP=27.30, P=0.002;FBNP=38.18, P=0.002),p-JNK和p-p38表达均升高(Fp-JNK=57.65,P<0.001; Fp-p38 =8.880,P=0.018),sFRP2的表达下调(FAngⅡ=47.53,P<0.001)。加入APN预处理1 h后,与单加AngⅡ组相比,APN+AngⅡ组NRVMs心功能损伤标志物ANP、BNP的表达降低(FANP=101.8,P<0.001;FBNP=51.14,P<0.001),sFRP2的含量上调(F=88.93,P<0.001),同时Wnt/β-catenin(F=41.33,P=0.006)及p38/JNK(Fp38=73.42,P<0.001;FJNK=39.28,P=0.002)通路的激活被抑制。加入p38/JNK通路抑制剂后,能够达到APN预处理的效果(FANP=122.9, P<0.001; FBNP= 202.3, P<0.001)。 结论 APN可能通过上调sFRP2,抑制Wnt/β-catenin、p38/JNK通路的激活,从而抑制AngⅡ诱导的心肌肥厚。

关键词: 心肌肥厚, 血管紧张素Ⅱ, 脂联素, 分泌型卷曲相关蛋白2, p38丝裂原活化蛋白激酶, c-Jun氨基末端激酶, Wnt/β-连环蛋白

Abstract: Objective To explore whether adiponectin(APN)involves in the regulation of angiotensin Ⅱ(Ang Ⅱ)-induced myocardial hypertrophy through secreted frizzled-related protein 2(sFRP2)and to determine the related pathways. Methods Neonatal rat ventricular myocytes(NRVMs)were isolated from 3-day-old Wistar rats to detect the expression of α-SMA, a NRVMs cytoskeleton protein with immunofluorescence. NRVMs were divided into control group, 1 nmol/L group, 10 nmol/L group, 100 nmol/L group and 500 nmol/L group to detect the effects of different concentrations of Ang Ⅱ on NRVMs. NRVMs were then divided into control group, Ang Ⅱ group, APN+Ang Ⅱ group, Ang Ⅱ+APN+si-sFRP2 group, Ang Ⅱ+APN+LiCl group, APN group, SP600125+Ang Ⅱ group and SB203580+Ang Ⅱ group to explore the effects of APN on Ang Ⅱ. The expression of sFRP2 and activation of Wnt/β-catenin and p38/JNK pathways in each group were determined with Western blotting. The indexes related to myocardial hypertrophy and sFRP2 mRNA in each group were determined with qPCR. Results ANP and BNP were increased(FANP=27.30, P=0.002; FBNP=38.18, P=0.002), expressions of p-p38 and p-JNK were increased(Fp-JNK=57.65, P<0.001; Fp-p38=8.880, P=0.018)and expression of sFRP2 was down-regulated(FAngⅡ=47.53, P<0.001)with Ang Ⅱ treatment for 24 hours compared with control group. APN pretreatment decreased the expressions of ANP and BNP(FANP=101.8, P<0.001; FBNP=51.14, P<0.001), up-regulated the expression of sFRP2(F=88.93, P<0.001), and inhibited the activation of Wnt/β-catenin(F=41.33, P=0.006)and p38/JNK pathways(Fp38=73.42, P<0.001; FJNK=39.28, P=0.002)compared with the Ang Ⅱ group. The treatment of p38/JNK pathway inhibitors achieved the effects of APN pretreatment(FANP=122.9, P<0.001; FBNP=202.3, P<0.001). Conclusion APN may inhibit Ang Ⅱ induced myocardial hypertrophy by up-regulating sFRP2 and inhibiting the activation of Wnt/β-catenin and p38/JNK pathways.

Key words: Myocardial hypertrophy, Angiotensin Ⅱ, Adiponectin, Secreted frizzled-related protein 2, p38 mitogen-activated protein kinases, c-Jun N-terminal kinase, Wnt/β-catenin

中图分类号: 

  • R542.2
[1] Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players[J]. Nat Rev Mol Cell Biol, 2013, 14(1): 38-48.
[2] Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling[J]. J Am Coll Cardiol, 2000, 35(3): 569-582.
[3] Dorn GW. The fuzzy logic of physiological cardiac hypertrophy[J]. Hypertension, 2007, 49(5): 962-970.
[4] Hirt MN, Sörensen NA, Bartholdt LM, et al. Increased afterload induces pathological cardiac hypertrophy: a new in vitro model[J]. Basic Res Cardiol, 2012, 107(6): 307.
[5] 刘梦迪, 张连峰, 吕丹. 心肌肥厚动物模型及代偿机制研究进展[J]. 中国比较医学杂志, 2020, 30(8): 102-106. LIU Mengdi, ZHANG Lianfeng, LYU Dan. Research progress on animal models of cardiac hypertrophy and compensation mechanisms[J]. Chinese Journal of Comparative Medicine, 2020, 8(30): 102-106.
[6] 薛周铭, 李静, 梁雪琦, 等. 心肌肥厚信号转导途径的研究进展[J]. 医学综述, 2021, 27(1): 29-35. XUE Zhouming, LI Jing, LIANG Xueqi, et al. Research progress on myocardial hypertrophy signal transduction pathways[J]. Medical Synopsis, 2021, 1(27): 29-35.
[7] Sabbah HN. Silent disease progression in clinically stable heart failure[J]. Eur J Heart Fail, 2017, 19(4): 469-478.
[8] Michels M, Olivotto I, Asselbergs FW, et al. Life-long tailoring of management for patients with hypertrophic cardiomyopathy: awareness and decision-making in changing scenarios[J]. Neth Heart J, 2017, 25(3): 186-199.
[9] Watanabe H, Yokosawa T, Eguchi S, et al. Functional and metabolic protection of the neonatal myocardium from ischemia. Insufficient protection by cardioplegia[J]. J Thorac Cardiovasc Surg, 1989, 97(1): 50-58.
[10] Wang L, Zhang YL, Lin QY, et al. CXCL1-CXCR2 axis mediates angiotensin II-induced cardiac hypertrophy and remodelling through regulation of monocyte infiltration[J]. Eur Heart J, 2018, 39(20): 1818-1831.
[11] Zhou LC, Ma BH, Han XZ. The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy[J]. J Mol Endocrinol, 2016, 57(4): R143-R152.
[12] Li H, Yao W, Irwin MG, et al. Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1[J]. Free Radic Biol Med, 2015, 84: 311-321. doi:10.1016/j.freeradbiomed.2015.03.007.
[13] Jian M, Kwan JS, Bunting M, et al. Adiponectin suppresses amyloid-β oligomer(AβO)-induced inflammatory response of microglia via AdipoR1-AMPK-NF-κB signaling pathway[J]. J Neuroinflammation, 2019, 16(1): 110.
[14] Li Y, Cai X, Guan Y, et al. Adiponectin upregulates MiR-133a in cardiac hypertrophy through AMPK activation and reduced ERK1/2 phosphorylation[J]. PLoS One, 2016, 11(2): e0148482.
[15] Wei WY, Zhao Q, Zhang WZ, et al. Secreted frizzled-related protein 2 prevents pressure-overload-induced cardiac hypertrophy by targeting the Wnt/β-catenin pathway[J]. Mol Cell Biochem, 2020, 472(1/2): 241-251.
[16] Lin H, Angeli M, Chung KJ, et al. sFRP2 activates Wnt/β-catenin signaling in cardiac fibroblasts: differential roles in cell growth, energy metabolism, and extracellular matrix remodeling[J]. Am J Physiol Cell Physiol, 2016, 311(5): C710-C719.
[17] Li CB, Li XX, Chen YG, et al. Effects and mechanisms of PPARalpha activator fenofibrate on myocardial remodelling in hypertension[J]. J Cell Mol Med, 2009, 13(11/12): 4444-4452.
[18] Li Y, Ma HL, Han L, et al. Novel ferrocenyl derivatives exert anti-cancer effect in human lung cancer cells in vitro via inducing G1-phase arrest and senescence[J]. Acta Pharmacol Sin, 2013, 34(7): 960-968.
[19] Wang SY, Ni X, Hu KQ, et al. Cilostazol alleviate nicotine induced cardiomyocytes hypertrophy through modulation of autophagy by CTSB/ROS/p38MAPK/JNK feedback loop[J]. Int J Biol Sci, 2020, 16(11): 2001-2013.
[20] Amin JK, Xiao L, Pimental DR, et al. Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes[J]. J Mol Cell Cardiol, 2001, 33(1): 131-139.
[21] Nakamura K, Fushimi K, Kouchi H, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II[J]. Circulation, 1998, 98(8): 794-799.
[22] Zhang Z, Deb A, Zhang Z, et al. Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a[J]. J Mol Cell Cardiol, 2009, 46(3): 370-377.
[23] Hao K, Lei W, Wu H, et al. LncRNA-Safe contributes to cardiac fibrosis through Safe-Sfrp2-HuR complex in mouse myocardial infarction[J]. Theranostics, 2019, 9(24): 7282-7297.
[24] Ni J, Liu X, Yin Y, et al. Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/Sfrp2 pathway[J]. Oxid Med Cell Longev, 2019, 2019: 1958941. doi:10.1155/2019/1958941.
[25] Yang S, Chen H, Tan K, et al. Secreted frizzled-related protein 2 and extracellular volume fraction in patients with heart failure[J]. Oxid Med Cell Longev, 2020, 2020: 2563508. doi:10.1155/2020/2563508.
[26] Wang X, Li W, Yue Q, et al. C-C chemokine receptor 5 signaling contributes to cardiac remodeling and dysfunction under pressure overload[J]. Mol Med Rep, 2021, 23(1): 49.
[27] Wu Y, Quan C, Yang Y, et al. Renalase improves pressure overload-induced heart failure in rats by regulating extracellular signal-regulated protein kinase 1/2 signaling[J]. Hypertens Res, 2021, 44(5): 481-488.
[28] Luo D, Chen P, Yang Z, et al. High plasma adiponectin is associated with increased pulmonary blood flow and reduced right ventricular function in patients with pulmonary hypertension[J]. BMC Pulm Med, 2020, 20(1): 204.
[29] George J, Patal S, Wexler D, et al. Circulating adiponectin concentrations in patients with congestive heart failure[J]. Heart, 2006, 92(10): 1420-1424.
[30] Zhang JC, Zhang WJ, Zhao Q, et al. Adiponectin improves isoflurane-induced cognitive dysfunction in elderly rats via inhibiting p38-MAPK signal pathway in Hippocampus[J]. Eur Rev Med Pharmacol Sci, 2019, 23(3 Suppl): 171-176.
[31] Liu H, Wu X, Luo J, et al. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β[J]. Exp Neurol, 2020, 329: 113302. doi: 10.1016/j.expneurol.2020.113302.
[32] Han XT, Wang YY, Fu MQ, et al. Effects of adiponectin on diastolic function in mice underwent transverse aorta constriction[J]. J Cardiovasc Transl Res, 2020, 13(2): 225-237.
[1] 张媛 李英敏 冯月秋 常彩云 潘华伟 王束玫. 血清脂联素水平与肥胖、胰岛素抵抗的关系探讨[J]. 山东大学学报(医学版), 2209, 47(6): 124-.
[2] 麻贞贞,孙红胜,杨清锐. 脂联素、内脂素、抵抗素在系统性红斑狼疮患者血清中的变化及临床意义[J]. 山东大学学报(医学版), 2017, 55(4): 86-90.
[3] 贾佳静,王志萍. 育龄期高水平生殖激素对大鼠围绝经期及绝经后血压的影响[J]. 山东大学学报(医学版), 2017, 55(11): 7-14.
[4] 姜蕾, 张磊, 梁江久. 长链非编码RNA在压力超负荷引起的大鼠心肌肥厚中的差异表达[J]. 山东大学学报(医学版), 2015, 53(5): 21-26.
[5] 刘雷雷, 鞠云飞, 许文飞, 鞠远荣. 氯沙坦对大鼠内毒素性急性肺损伤的影响及可能机制[J]. 山东大学学报(医学版), 2015, 53(2): 6-11.
[6] 王光亚, 郭宁宁, 赵乃蕊, 李瑞杰, 高书明. 脂联素水平在2型糖尿病和甲状腺疾病中的变化及意义[J]. 山东大学学报(医学版), 2014, 52(S1): 96-97.
[7] 刘天骄, 郭媛, 李婷婷, 张建宁, 李俊, 张鹏. 血清CTRP9、APN水平与急性冠脉综合征的相关性[J]. 山东大学学报(医学版), 2014, 52(9): 58-62.
[8] 刘文辉, 李晓玲, 袁萍, 栾荣生, 冯斐, 胡晓琴, 燕锦, 杨艳芳. 脂联素基因和钙蛋白酶10基因多态性与结直肠癌发生风险的关系[J]. 山东大学学报(医学版), 2014, 52(11): 106-112.
[9] 何俊峰1,刘俊2,王伟人3,张青峰1,杨琼芬1,李光友1,周林1,李志梅1,李佩珍1. 贵州省神经管畸形影响因素的病例对照研究[J]. 山东大学学报(医学版), 2013, 51(7): 50-53.
[10] 杨艳1,阎春英1,陈旭2,林晓燕3,王来城4,石军1. 氯沙坦对实验性肝纤维化模型大鼠的作用[J]. 山东大学学报(医学版), 2013, 51(3): 27-31.
[11] 陆冠延1,崔彬2,刘忠良3,李玉瑭4,刘雪飞3,马晓静1,朱贵月1,苑海涛1. 缬沙坦对慢性病毒性心肌炎小鼠Th17/Treg免疫平衡的影响[J]. 山东大学学报(医学版), 2013, 51(2): 1-.
[12] 张娜娜1,王立祥1,曾季平2,魏欣冰1,曹敏敏1,刘慧青1,孙霞1,张岫美1. Ang Ⅱ诱导大鼠原代海马神经细胞衰老的作用及机制[J]. 山东大学学报(医学版), 2013, 51(2): 17-21.
[13] 季恩飞1,刘学文2. p38MAPK信号通路抑制剂对NMDA诱导的体外培养的皮层神经元损伤的保护作用及机制[J]. 山东大学学报(医学版), 2013, 51(11): 10-15.
[14] 吴明绘,朱清,岳欣. 血管紧张素Ⅱ通过NF-κB信号传导途径促进人脐静脉内皮细胞内皮脂肪酶表达[J]. 山东大学学报(医学版), 2013, 51(06): 11-14.
[15] 徐雪,梁江久. 瑞舒伐他汀逆转压力超负荷引起心肌肥厚的作用机制[J]. 山东大学学报(医学版), 2013, 51(06): 5-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[8] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[9] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[10] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .