您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2014, Vol. 52 ›› Issue (7): 16-21.doi: 10.6040/j.issn.1671-7554.0.2013.743

• 基础医学 • 上一篇    下一篇

乙酰辅酶A羧化酶2表达下调对高糖培养的人肾小管上皮细胞脂质沉积和间充质转化的影响

黄静1, 胥莹1, 刘毅2, 辛玮3, 赵胥1, 刘蕾1, 完强1   

  1. 1. 山东大学附属省立医院 肾内科, 山东 济南 250021;
    2. 山东大学附属省立医院 呼吸内科, 山东 济南 250021;
    3. 山东大学附属省立医院 中心实验室, 山东 济南 250021
  • 收稿日期:2013-12-09 修回日期:2014-06-10 出版日期:2014-07-10 发布日期:2014-07-10
  • 通讯作者: 完强。E-mail:wanyanshaoqiang@163.com E-mail:wanyanshaoqiang@163.com
  • 基金资助:
    国家自然科学基金(81200610);山东省自然科学基金(ZR2009CM043)

Effects of down-regulating of acetyl CoA carboxylase 2 on intracellular lipid accumulation and epithelial mesenchymal transition in high glucose cultured human renal proximal tubular epithelial cells

HUANG Jing1, XU Ying1, LIU Yi2, XIN Wei3, ZHAO Xu1, LIU Lei1, WAN Qiang1   

  1. 1. Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China;
    2. Department of Respiratory Diseases, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China;
    3. Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
  • Received:2013-12-09 Revised:2014-06-10 Online:2014-07-10 Published:2014-07-10

摘要: 目的 探讨乙酰辅酶A羧化酶2(ACC2)表达下调对高糖培养的人肾小管上皮细胞(HKC)脂质沉积及小管上皮细胞间充质转化(EMT)的影响及可能机制。方法 构建ACC2基因特异性的短发夹双链RNA(shRNA)慢病毒感染HKC,将其分为5组:正常糖组(5.5 mmol/L葡萄糖,NG组)、高糖组(30 mmol/L葡萄糖,HG组)、高渗对照组(5 mmol/L葡萄糖+25 mmol/L甘露醇,HO组)、ACC2干扰组(感染含ACC2干扰序列慢病毒,ACC2-shRNA组)、干扰对照组(感染携带绿色萤光蛋白的阴性对照慢病毒,NC-shRNA组),分别处理96 h,Western blotting检测ACC2干扰效率及E-钙黏蛋白(E-cadherin)、α-平滑肌肌动蛋白(α-SMA)表达,油红O染色检测细胞内脂质沉积,光镜下观察细胞形态变化。结果 与HO组相比,HG组HKC细胞内脂质沉积增加,细胞拉长,E-cadherin表达减少,α-SMA表达增多(P<0.05);干扰ACC2基因后,高糖诱导的细胞内脂质沉积减少,细胞形态改善,E-cadherin和α-SMA表达趋于正常。结论 下调ACC2表达可抑制高糖诱导的HKC脂质沉积和小管上皮细胞EMT。

关键词: RNA干扰, 上皮细胞间充质转化, 糖尿病肾病, 乙酰辅酶A羧化酶2, 脂毒性

Abstract: Objective To explore the effects and mechanisms of RNA interference mediated by lentivirus down-regulating acetyl CoA carboxylase 2 (ACC2) on intracellular lipid accumulation and epithelial mesenchymal transition (EMT) in high glucose cultured human renal proximal tubular epithelial cells (HKC). Methods The lentivirus vector based on small hairpin RNA (shRNA) targeting ACC2 was constructed and delivered to HKC cells cultured in high glucose. Then the cells were divided into 5 groups: normal glucose group (5.5 mmol/L glucose, NG group), high glucose group (30 mmol/L glucose, HG group), high osmotic pressure control group (5.5mmol/L glucose plus 24.5 mmol/L mannitol, HO group), ACC2-shRNA group (30 mmol/L glucose plus ACC2-shRNA lentivirous), and NC-shRNA group (30 mmol/L glucose plus empty lentivirous carrying the green fluorescent protein as negative control). After treated for 96 h, morphology change of HKC cells was observed under microscope, intracellular lipid accumulation was obtained by Oil Red O staining, and E-cadherin and α-SMA protein levels were detected by Western blotting. Results High glucose induced morphology change and intracellular lipid accumulation of cultured HKC cells. Protein level of E-cadherin was decreased, while α-SMA was increased(P<0.05). Interference of ACC2 successfully restored high glucose stimulated morphology change and cellular lipid accumulation; the expression level of E-cadherin protein was increased and α-SMA protein was reduced. Conclusion Interference of ACC2 can ameliorate high glucosestimulated cellular lipid accumulation and epithelial mesenchymal transition, then improve renal fibrosis.

Key words: Acetyl CoA carboxylase 2, Diabetic nephropathy, RNA interference, Lipotoxicity, Epithelial mesenchymal transition

中图分类号: 

  • R587.1
[1] Murea M, Freedman B I, Parks J S, et al. Lipotoxicity in diabetic nephropathy: the potential role of fatty acid oxidation[J]. Clin J Am Soc Nephrol, 2010, 5(12): 2373-2379.
[2] 黄燕飞, 刘志红. 脂毒性与2型糖尿病及其并发症的关系[J]. 肾脏病与透析肾移植杂志, 2002, 11(1): 58-63.
[3] Maeda S, Kobayashi M, Araki S, et al. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes[J]. PLoS genetics, 2010, 6(2): e1000842. doi:10.1371/journal.pgen.1000842.
[4] 李能娟, 李红. 肾小管上皮细胞表型转化与糖尿病肾病[J]. 国际内分泌代谢杂志, 2006,26(4):277-279.
[5] 李荟, 马宏. 肾小管上皮细胞-间充质细胞转分化在肾间质纤维化中的作用[J]. 国外医学·泌尿系统分册, 2005, 25(3): 426-429.
[6] Lv Z M, Wang Q, Wan Q, et al. The role of the p38 MAPK signaling pathway in high glucose-induced epithelial-mesenchymal transition of cultured human renal tubular epithelial cells[J]. PloS one, 2011, 6(7): e22806. doi:10.1371/journal.pone.0022806.
[7] Jun H, Song Z, Chen W, et al. In vivo and in vitro effects of SREBP-1 on diabetic renal tubular lipid accumulation and RNAi-mediated gene silencing study[J]. Histochem Cell Biol, 2009, 131(3): 327-345.
[8] Hao J, Zhu L, Zhao S, et al. PTEN ameliorates high glucose-induced lipid deposits through regulating SREBP-1/FASN/ACC pathway in renal proximal tubular cells[J]. Exp Cell Res, 2011, 317(11): 1629-1639.
[9] 梁真, 程桦. 脂毒性与 2 型糖尿病[J]. 国外医学·内科学分册, 2004, 31(2): 50-53.
[10] Kume S, Uzu T, Araki S, et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet[J]. J Am Soc Nephrol, 2007, 18(10): 2715-2723.
[11] Wang Z, Jiang T, Li J, et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes[J]. Diabetes, 2005, 54(8): 2328-2335.
[12] Jiang T, Wang X X, Scherzer P, et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy[J]. Diabetes, 2007, 56(10): 2485-2493.
[13] Sun L, Halaihel N, Zhang W, et al. Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus[J]. J Biol Chem, 2002, 277(21): 18919-18927.
[14] Abu-Elheiga L, Brinkley W R, Zhong L, et al. The subcellular localization of acetyl-CoA carboxylase 2[J]. Proc Nat Acad Sci U S A, 2000, 97(4): 1444-1449.
[15] McGarry J D, Mannaerts G P, Foster D W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis[J]. J Clin Invest, 1977, 60(1): 265.
[16] Abu-Elheiga L, Matzuk M M, Abo-Hashema K A H, et al. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2[J]. Science, 2001, 291(5513): 2613-2616.
[17] Kobayashi M, Watada H, Kawamori R, et al. Overexpression of acetyl-coenzyme A carboxylase beta increases proinflammatory cytokines in cultured human renal proximal tubular epithelial cells[J]. Clin Exp Nephrol, 2010, 14(4): 315-324.
[1] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[2] 陈志新,王颖,曹新冉, 黑乃豪,李俊龙,董波,关广聚. 非肽类Ang(1-7)受体激动剂AVE0991对大鼠糖尿病肾病的保护作用[J]. 山东大学学报(医学版), 2016, 54(10): 29-33.
[3] 高峰, 康白, 杨洪鸣, 赵廷坤, 曲梅花, 王金红. 皮肤T细胞淋巴瘤相关抗原5在肿瘤细胞株中的表达[J]. 山东大学学报(医学版), 2015, 53(3): 41-45.
[4] 涂燕, 李振江, 汤爱平, 费妍, 李慧慧, 李剑, 贺文凤. 干扰CD147表达抑制白血病细胞SHI-1增殖及移行[J]. 山东大学学报(医学版), 2014, 52(9): 1-5.
[5] 董兆静,尚倩雯,郭春,张利宁,王群. RNA干扰PDCD4基因表达对巨噬细胞脂质沉积的影响[J]. 山东大学学报(医学版), 2014, 52(4): 18-21.
[6] 王皓1,李霞2,王超3,李国盛1,郭春1,朱法良1,张利宁1,石永玉1. 肿瘤相关巨噬细胞在肝癌上皮细胞间质转型中的作用[J]. 山东大学学报(医学版), 2014, 52(4): 8-12.
[7] 罗剑刚,孙涛,林小雯,李芸,赵菲,苗贵申,傅志俭. 慢病毒介导RNAi沉默大鼠脊髓神经元NF-κB p65基因的观察[J]. 山东大学学报(医学版), 2014, 52(3): 23-26.
[8] 张锦航1,张鲁伟1,刘新农2,田军1. Db/db小鼠肾脏中Tribble3的表达及其与肾脏纤维化的关系[J]. 山东大学学报(医学版), 2014, 52(2): 38-43.
[9] 吕艳锋, 姜华, 王建新, 张成博. 靶向EZH2的shRNA表达对SW480细胞的抑制作用及5-Fu对其影响的研究[J]. 山东大学学报(医学版), 2014, 52(11): 11-15.
[10] 杨志英, 刘向春, 关广聚. 蛋氨酸亚砜还原酶B1在糖尿病小鼠肾脏中的表达变化及其与氧化应激的关系[J]. 山东大学学报(医学版), 2014, 52(10): 29-34.
[11] 吕艳锋1,韩冰冰2,禹化龙1,王建新1. 抑制EZH2基因表达的shRNA载体的构建及其作用[J]. 山东大学学报(医学版), 2013, 51(9): 31-34.
[12] 毕大鹏1,嵇高德1,张洪星2 . 通心络胶囊对早期糖尿病肾病患者胱抑素C的影响[J]. 山东大学学报(医学版), 2013, 51(7): 67-69.
[13] 朱守荣1,张芮2,曹永倩1,冯璋1,王一兵1. 慢病毒载体靶向携带survivin-siRNA对恶性黑色素瘤A375细胞的影响[J]. 山东大学学报(医学版), 2013, 51(5): 54-57.
[14] 徐洋洋1, 2,姜政1, 2,周伟3,江玉泉1, 2,李新钢1, 2 . HIF-1α慢病毒干扰载体构建及GL261小鼠胶质瘤稳定沉默细胞系的建立[J]. 山东大学学报(医学版), 2013, 51(2): 12-16.
[15] 徐威,常宏,翟云鹏. Livin shRNA真核表达载体构建及其对HepG2细胞化疗敏感性的影响[J]. 山东大学学报(医学版), 2013, 51(12): 20-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!