您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (3): 81-86.doi: 10.6040/j.issn.1671-7554.0.2019.1257

• • 上一篇    下一篇

CD151-MUT突变对肺腺癌细胞A549迁移的影响及机制

杨秀婷1,刘启功2,左萍2,刘正湘2,左后娟2   

  1. 1.滨州医学院附属医院心血管内科 山东 滨州 256600;2. 华中科技大学同济医学院附属同济医院心血管内科, 湖北 武汉 430030
  • 出版日期:2020-03-10 发布日期:2022-09-27
  • 通讯作者: 左后娟. E-mail:zuohoujuan@126.com
  • 基金资助:
    国家自然科学基金(81873535)

Effect of CD151-MUT mutation on migration of lung adenocarcinoma cell line A549 and its mechanism

YANG Xiuting1, LIU Qigong2, ZUO Ping2, LIU Zhengxiang2, ZUO Houjuan2   

  1. 1. Department of Cardiology of Binzhou Medical University Hospital, Binzhou 256600, Shandong, China;
    2. Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
  • Online:2020-03-10 Published:2022-09-27

摘要: 目的 研究CD151整合素结合缺陷突变体(CD151-MUT)突变对肺腺癌细胞A549迁移的影响及机制。 方法 分别运用CD151、CD151-MUT和GFP质粒转染肺腺癌A549细胞,作为CD151组、CD151-MUT组和GFP组,同时设置Control组及Reagent组。改良的Boyden趋化小室法检测各组细胞的体外迁移能力。Western blotting方法检测各组细胞CD151蛋白、黏着斑激酶(FAK)及P130Cas蛋白的表达。 结果 (1) CD151组(2.23±0.22)和CD151-MUT组(2.15±0.17)CD151蛋白的表达较Control组(1.03±0.15)、GFP组(1.18±0.13)和Reagent组(1.22±0.11)均增高,5组均值差异有统计学意义(F=39.8,P<0.001),但两两多重比较显示CD151组和CD151-MUT组间差异无统计学意义(q=1.007, P=0.628)。(2)CD151组较Control组、GFP组及Reagent组促进肿瘤细胞的迁移(F=15.3, P=0.007),而CD151-MUT组细胞的迁移能力较CD151组下降,差异有统计学意义(q=6.760,P=0.010)。(3)CD151高表达促进p-FAK、p-P130Cas蛋白表达增加(F=16.3,P<0.001; F=10.9,P=0.001),而CD151-MUT组p-FAK 、p-P130Cas蛋白表达水平较CD151组减弱(q=8.620,P=0.010; q=6.859,P=0.009)。 结论 CD151-MUT突变破坏CD151-整合素复合体形成,抑制肿瘤转移。CD151-α3/α6整合素复合体在肿瘤细胞迁移过程中发挥重要作用。

关键词: 整合素, CD151, 肿瘤转移, FAK-P130Cas, 肺腺癌细胞A549

Abstract: Objective To study the effect of CD151-MUT on migration of lung adenocarcinoma cell line A549 and the mechanism involved. Methods pAAV-CD151, pAAV-CD151-MUT and pAAV-GFP were constructed and transfected into A549, and named as CD151 group, CD151-MUT group and GFP group. Meanwhile, Control group and Reagent group were set up. The migration of A549 was detected by modified Boyden chamber assay. Protein expression levels of CD151,p-focal adhesion kinase(FAK)and p-P130Cas were measured by Western blotting. Results (1)Compared with the Control group(1.03±0.15), GFP group(1.18±0.13)and Reagent group(1.22±0.11), the expression of CD151 protein was increased both in the CD151 group(2.23±0.22)and CD151-MUT group(2.15±0.17)with statistical difference(F=39.8,P<0.001), but there was no significant difference of the CD151 protein expression between CDC151 and CDC151-CDC151-MUT groups(q=1.007,P=0.628). (2) The CD151 group significantly promoted cells migration compared with the Control group, GFP group and Reagent group(F=15.3, P=0.007). However, compared with the CD151 group, the migration and invasion of A549 cells were decreased in CD151-MUT group(q=6.760,P=0.010). (3) Overexpression of the CD151 protein could promote the expressions of p-FAK and p-P130Cas proteins(F=16.3,P<0.001; F=10.9,P=0.001), while the protein expressions were reduced in the CD151-MUT group compared with CD151 group(q=8.620,P=0.010; q=6.859,P=0.009). Conclusion CD151-MUT mutation impairs the formation of CD151-integrin and inhibits the tumor metastasis. The CD151-α3/α6 integrins complex is functionally important.

Key words: Integrin, CD151, Tumor migration, FAK-P130Cas, Lung adenocarcinoma cell line A549

中图分类号: 

  • R734.2
[1] Brzozowski JS, Bond DR, Jankowski H, et al. Extracellular vesicles with altered tetraspanin CD9 and CD151 levels confer increased prostate cell motility and invasion[J]. Sci Rep, 2018, 8(1): 8822.
[2] 俞雷来,曹利平. CD151与肿瘤侵袭转移的关系研究进展[J]. 浙江医学, 2017, 39(8): 663-665.
[3] Shi GM, Ke AW, Zhou J, et al. CD151 modulates expression of matrix metalloproteinase 9 and promotes neoangiogenesis and progression of hepatocellular carcinoma[J]. Hepatology, 2010, 52(1): 183-196.
[4] Yang YM, Zhang ZW, Liu QM, et al. Overexpression of CD151 predicts prognosis in patients with resected gastric cancer[J]. PLoS One, 2013, 8(3): e58990. doi: 10.1371/journal.pone.0058990.
[5] Sadej R, Grudowska A, Turczyk L, et al. CD151 in cancer progression and metastasis: a complex scenario[J]. Lab Invest, 2014, 94(1): 41-51.
[6] Yu Y, Liang C, Wang S, et al. CD151 promotes cell metastasis via activating TGF-beta1/Smad signaling in renal cell carcinoma[J]. Oncotarget, 2018, 9(17): 13313-13323.
[7] Detchokul S, Williams ED, Parker MW, et al. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies[J]. Br J Pharmacol, 2014, 171(24): 5462-5490.
[8] Berditchevski F. Complexes of tetraspanins with integrins: more than meets the eye[J]. J Cell Sci, 2001, 114(Pt 23): 4143-4151.
[9] Te ML, Juksar J, Harkes R, et al. Tetraspanin CD151 and integrin alpha3beta1 contribute to the stabilization of integrin alpha6beta4-containing cell-matrix adhesions[J]. J Cell Sci, 2019, 132(19). doi: 10.1242/jcs.235366.
[10] Kazarov AR, Yang X, Stipp CS, et al. An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology[J]. J Cell Biol, 2002, 158(7): 1299-1309.
[11] Liu WF, Zuo HJ, Chai BL, et al. Role of tetraspanin CD151-alpha3/alpha6 integrin complex: implication in angiogenesis CD151-integrin complex in angiogenesis[J]. Int J Biochem Cell Biol, 2011, 43(4): 642-650.
[12] 刘伟峰,于晓晖,左后娟,等. rAAV-CD151-AAA194-196表达对大鼠缺血后肢血管新生的影响[J]. 华中科技大学学报(医学版), 2011, 40(5): 525-528. LIU Weifeng, YU Xiaohui, ZUO Houjuan, et al. Effect of rAAV-CD151-AAA194-196 expression on angiogenesis of rat ischemia hind-limb [J]. Acta Med Univ Sci Technol Huazhong, 2011, 40(5): 525-528.
[13] Zeng P, Wang YH, Si M, et al. Tetraspanin CD151 as an emerging potential poor prognostic factor across solid tumors: a systematic review and meta-analysis[J]. Oncotarget, 2017, 8(3): 5592-5602.
[14] Kwon MJ, Park S, Choi JY, et al. Clinical significance of CD151 overexpression in subtypes of invasive breast cancer[J]. Br J Cancer, 2012, 106(5): 923-930.
[15] 李科,洪志鹏,沈丽达,等. CD151及整合素α3β1蛋白在非小细胞肺癌中的表达及意义[J]. 中国全科医学, 2014, 17(5): 531-535. LI Ke, HONG Zhipeng, SHEN Lida, et al. CD151 and integrinα3β1 expression in non-small cell lung cancer[J]. Chinese General Practice, 2014, 17(5): 531-535.
[16] Kumari S, Devi GT, Badana A, et al. CD151-a striking marker for cancer therapy[J]. Biomark Cancer, 2015, 7: 7-11. doi: 10.4137/BIC.S21847.
[17] Zevian S, Winterwood NE, Stipp CS. Structure-function analysis of tetraspanin CD151 reveals distinct requirements for tumor cell behaviors mediated by alpha3beta1 versus alpha6beta4 integrin[J]. J Biol Chem, 2011, 286(9): 7496-7506.
[18] Sterk LM, Geuijen CA, van den Berg JG, et al. Association of the tetraspanin CD151 with the laminin-binding integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 in cells in culture and in vivo[J]. J Cell Sci, 2002, 115(Pt 6): 1161-1173.
[19] Yauch RL, Kazarov AR, Desai B, et al. Direct extracellular contact between integrin alpha(3)beta(1)and TM4SF protein CD151[J]. J Biol Chem, 2000, 275(13): 9230-9238.
[20] Nishiuchi R, Sanzen N, Nada S, et al. Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151[J]. Proc Natl Acad Sci U S A, 2005, 102(6): 1939-1944.
[21] Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications[J]. Nat Rev Cancer, 2014, 14(9): 598-610.
[22] Yang X, Li S, Zhong J, et al. CD151 mediates netrin-1-induced angiogenesis through the Src-FAK-Paxillin pathway[J]. J Cell Mol Med, 2017, 21(1): 72-80.
[23] Almeida EA, Ilic D, Han Q, et al. Matrix survival signaling: from fibronectin via focal adhesion kinase to c-Jun NH(2)-terminal kinase[J]. J Cell Biol, 2000, 149(3): 741-754.
[24] Wang Y, Mcniven MA. Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK-p130Cas complex[J]. J Cell Biol, 2012, 196(3): 375-385.
[25] Liu X, Yan Z, Huang L, et al. Cell surface heat shock protein 90 modulates prostate cancer cell adhesion and invasion through the integrin-beta1/focal adhesion kinase/c-Src signaling pathway[J]. Oncol Rep, 2011, 25(5): 1343-1351.
[1] 王雪,李倩,王莉,孙书珍,马爱华. CXCL16基因沉默减轻ox-LDL对小鼠足细胞损伤[J]. 山东大学学报(医学版), 2016, 54(6): 16-21.
[2] 袁冰,李冉冉,韩明勇. 恶性黑色素瘤调节肺组织微环境并促进肿瘤肺转移的实验研究[J]. 山东大学学报(医学版), 2016, 54(11): 13-18.
[3] 高鹏, 沈方臻, 肖文静, 修元德, 周玲玲. IB期非小细胞肺癌Runx2、Ezrin表达与术后转移的相关性[J]. 山东大学学报(医学版), 2015, 53(1): 63-66.
[4] 朱玉广,朱艳,王杰,钟莹莹,杜孝楠,张荣. 整合素-β1在转化生长因子-β2诱导晶状体上皮细胞转化中的作用[J]. 山东大学学报(医学版), 2012, 50(11): 58-.
[5] 殷宪明1,董白桦1,张韵2,苏士利1,董召刚2,曲迅2. 正常早孕及稽留流产患者NK细胞中整合素αvβ3的表达分析[J]. 山东大学学报(医学版), 2011, 49(6): 140-.
[6] 姜英俊1,2,孔心涓3,张可爽3,胡三元1. c-Met在大肠癌中的表达及在大肠癌发生发展中的作用[J]. 山东大学学报(医学版), 2011, 49(5): 90-93.
[7] 王勇,张娇,任万华,李涛. MTA1、nm23、c-myc在肝癌组织中的表达及其相关性[J]. 山东大学学报(医学版), 2011, 49(1): 99-.
[8] 陈强1,2,吕家驹1,荆涛2,李玉军3. 基质金属蛋白酶-2和趋化因子受体4在肾透明细胞癌组织中的表达及其临床意义[J]. 山东大学学报(医学版), 2010, 48(6): 107-.
[9] 黄先亮1,董白桦1,胡微煦2,王庆杰2,宋丙凤2,王春娥2,刘佳2,孔北华1,曲迅2. 妊娠早期CD56brightCD16- NK细胞CD49d和CD11b的表达分析[J]. 山东大学学报(医学版), 2010, 48(5): 97-100.
[10] 刘文婷,孙青. DC-LAMP与DC-SIGN在寻常型银屑病皮损中的表达[J]. 山东大学学报(医学版), 2010, 48(4): 136-138.
[11] 李军1,2,王洲1,李树海3,李玉4. ABH及Lewis组织-血型抗原异常表达与原发肺癌生物学行为的相关性研究[J]. 山东大学学报(医学版), 2010, 48(4): 124-129.
[12] 孟龙,张阳德,王一兵. 非小细胞肺癌中VEGF-C、CD44v6的表达及临床意义[J]. 山东大学学报(医学版), 2010, 48(4): 83-86.
[13] 龙成凤,林殿杰,崔纪云,万云焱
. Galectin3与肺腺癌淋巴及胸膜转移的关系[J]. 山东大学学报(医学版), 2009, 47(01): 72-75.
[14] 崔亚洲,贾 青,王兆朋,王朝霞,田 美,张月英,张维东,韩金祥 . 裸鼠胰腺癌高肝转移模型的建立[J]. 山东大学学报(医学版), 2008, 46(8): 739-741.
[15] 李增军,孙燕来,李健宁,韩建军 . 结直肠癌根治术后复发转移相关因素分析[J]. 山东大学学报(医学版), 2007, 45(8): 849-851.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!