山东大学学报 (医学版) ›› 2020, Vol. 1 ›› Issue (7): 1-6.doi: 10.6040/j.issn.1671-7554.0.2020.0392
• 基础医学 • 下一篇
索东阳1,申飞1,郭皓2,刘力畅1,杨惠敏1,杨向东1
SUO Dongyang1, SHEN Fei1, GUO Hao2, LIU Lichang1, YANG Huimin1, YANG Xiangdong1
摘要: 目的 探索T细胞免疫球蛋白黏蛋白分子3(Tim-3)在急性肾损伤(AKI)中的作用,并研究其作用机制。 方法 将6~8周C57雄性小鼠随机分为对照组(CTRL组)、顺铂组(AKI组)及顺铂+阻断Tim-3组(RMT组),每组4只,AKI组使用顺铂(20 mg/kg)腹腔注射,构建AKI动物模型,检测肾脏损伤情况与Tim-3表达情况。RMT组使用抗体RMT3-23(200 μg/只)阻断Tim-3分子,建立AKI模型,检测AKI组与RMT组肾脏损伤情况以及Tim-3、自噬相关分子的表达情况。 结果 肾脏近端小管出现损伤,Western blotting 结果显示 AKI组Tim-3表达水平较CTRL组增加(t=3.876,P=0.008 2)。与AKI组相比,RMT组的NGAL和P62表达水平均增高,但差异无统计学意义(tNGAL=1.664,P=0.157 0;tP62=1.991,P=0.103 1),LC3II表达下降,差异有统计学意义(t=5.901,P=0.002 0),自噬受到抑制且肾脏小管损伤加重(P=0.010 1)。 结论 Tim-3可以通过调节肾小管上皮细胞自噬活性,减轻顺铂诱导的AKI肾损伤。
中图分类号:
[1] | 涂玉凤,赵馥. 噬血细胞综合征伴急性肾损伤1例[J].山东大学学报(医学版), 2019, 57(6): 117-121. |
[2] | 葛均克,赵升田. 骨髓间充质干细胞与CD133+肾脏细胞对急性肾损伤的疗效[J].山东大学学报(医学版),2013,51(9): 55-59. GE Junke, ZHAO Shengtian. Protective effect of bone marrow mesenchymal stem cells and CD133+ renal cells on acute renal injury [J]. Journal of Shandong University(Health Sciences), 2013, 51(9): 55-59. |
[3] | Periyasamy-Thandavan S, Jiang M, Schoenlein P, et al. Autophagy: molecular machinery, regulation, and implications for renal pathophysiology [J]. Am J Physiol Renal Physiol, 2009, 297(2): F244-F256. |
[4] | Jiang M, Wei Q, Dong G, et al. Autophagy in proximal tubules protects against acute kidney injury [J]. Kidney Int, 2012, 82(12): 1271-1283. |
[5] | Periyasamy-Thandavan S, Jiang M, Wei Q, et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells [J]. Kidney Int, 2008, 74(5): 631-640. |
[6] | Kaushal GP, Kaushal V, Herzog C, et al. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity [J]. Autophagy, 2008, 4(5): 710-712. |
[7] | Takahashi A, Kimura T, Takabatake Y, et al. Autophagy guards against cisplatin-induced acute kidney injury[J]. Am J Pathol, 2012, 180(2): 517-525. |
[8] | Han G, Chen G, Shen B, et al. Tim-3: an activation marker and activation limiter of innate immune cells[J]. Front Immunol, 2013, 4: 449-449. doi: 10.3389/fimmu.2013.00449. |
[9] | Zhu C, Anderson AC, Kuchroo VK. TIM-3 and its regulatory role in immune responses[J]. Curr Top Microbiol Immunol, 2011, 350: 1-15. doi: 10.1007/82_2010_84. |
[10] | Tang R, Rangachari M, Kuchroo VK. Tim-3: a co-receptor with diverse roles in T cell exhaustion and tolerance[J]. Semin Immunol, 2019, 42: 101302. doi: 10.1016/j.smim.2019.101302. |
[11] | Sakuishi K, Jayaraman P, Behar SM, et al. Emerging Tim-3 functions in antimicrobial and tumor immunity[J]. Trends Immunol, 2011, 32(8): 345-349. |
[12] | 陶景莲, 李丽娟, 邵宗鸿. TIM3在肿瘤微环境中作用的研究进展[J]. 中国免疫学杂志, 2016, 32(7): 1070-1073. |
[13] | 马艳苗, 王永辉, 周然. 肾脏病理损伤评价在实验和临床研究中的应用前景[J]. 世界中西医结合杂志, 2010, 5(3): 266-268. |
[14] | Bellomo R, Kellum JA, Ronco C. Acute kidney injury[J]. Lancet, 2012, 380(9843): 756-766. |
[15] | Martin RK. Acute kidney injury: advances in definition, pathophysiology, and diagnosis[J]. AACN Adv Crit Care, 2010, 21(4): 350-356. |
[16] | Mehta RL, Awdishu L, Davenport A, et al. Phenotype standardization for drug-induced kidney disease[J]. Kidney Int, 2015, 88(2): 226-234. |
[17] | Lameire NH, Bagga A, Cruz D, et al. Acute kidney injury: an increasing global concern[J]. Lancet, 2013, 382(9887): 170-179. |
[18] | 林丹欣, 杜斌. 急性肾损伤的液体管理[J]. 心肺血管病杂志 2019, 38(11): 1188-1191. |
[19] | Sanchez-Fueyo A, Tian J, Picarella D, et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance[J]. Nat Immunol, 2003, 4(11): 1093-1101. |
[20] | Schroll A, Eller K, Huber JM, et al. Tim3 is upregulated and protective in nephrotoxic serum nephritis[J]. Am J Pathol, 2010, 176(4): 1716-1724. |
[21] | Yang H, Xie T, Li D, et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway[J]. Mol Metab, 2019, 23: 24-36. doi: 10.1016/j.molmet.2019.02.007. |
[22] | Guo Y, Zhang J, Lai X, et al. Tim-3 exacerbates kidney ischaemia/reperfusion injury through the TLR-4/NF-κB signalling pathway and an NLR-C4 inflammasome activation[J]. Clin Exp Immunol, 2018, 193(1): 113-129. |
[23] | Izzedine H, Perazella MA. Anticancer drug-induced acute kidney injury[J]. Kidney Int Rep, 2017, 2(4): 504-514. |
[24] | Filipski KK, Mathijssen RH, Mikkelsen TS, et al. Contribution of organic cation transporter 2(OCT2)to cisplatin-induced nephrotoxicity[J]. Clin Pharmacol Ther, 2009, 86(4): 396-402. |
[25] | Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury[J]. Biomed Res Int, 2014, 2014: 967826. doi: 10.1155/2014/967826. |
[26] | Wisnovsky SP, Wilson JJ, Radford RJ, et al. Targeting mitochondrial DNA with a platinum-based anticancer agent[J]. Chem Biol, 2013, 20(11): 1323-1328. |
[27] | Dall KB, Færgeman NJ. Metabolic regulation of lifespan from a C. elegans perspective[J]. Genes Nutr, 2019, 14: 25. doi: 10.1186/s12263-019-0650-x. |
[28] | Xu Y, Ma H, Shao J, et al. A role for tubular necroptosis in cisplatin-induced AKI[J]. J Am Soc Nephrol, 2015, 26(11): 2647-2658. |
[29] | Lee YK, Lee JA. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy[J]. BMB Rep, 2016, 49(8): 424-430. |
[30] | Katsuragi Y, Ichimura Y, Komatsu M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor[J]. FEBS J, 2015, 282(24): 4672-4678. |
[31] | Sánchez-Martín P, Komatsu M. p62/SQSTM1-steering the cell through health and disease[J]. J Cell Sci, 2018, 131(21): jcs222836. doi: 10.1242/jcs.222836. |
[32] | Ichimura Y, Kominami E, Tanaka K, et al. Selective turnover of p62/A170/SQSTM1 by autophagy[J]. Autophagy, 2008, 4(8): 1063-1066. |
[33] | Komatsu M. Potential role of p62 in tumor development[J]. Autophagy, 2011, 7(9): 1088-1090. |
[34] | Ichimura Y, Komatsu M. Selective degradation of p62 by autophagy[J]. Semin Immunopathol, 2010, 32(4): 431-436. |
[1] | 杨晓倩 季静 刘娜 郭冬梅 崔癉. 三氯化铁及络合铁的抗银屑病作用研究[J]. 山东大学学报(医学版), 2209, 47(6): 114-117. |
[2] | 段淑红 刘凯 尹海燕 赵世斗 刘丰韬. 凝集素受体WGA、RCA和ECL在过量维甲酸致昆明小鼠腭裂发生中的作用[J]. 山东大学学报(医学版), 2209, 47(6): 47-. |
[3] | 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7. |
[4] | 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21. |
[5] | 菅天孜,陈诺,李理想,李延青,李艳. D-甘露糖和葡萄糖在溃疡性结肠炎小鼠中的作用[J]. 山东大学学报 (医学版), 2022, 60(3): 24-28. |
[6] | 王洲洋,江蓓,李宪花,甄军晖,杨向东,胡昭,刘广义,裴斐. 感染性心内膜炎、急性肾损伤伴PR3-ANCA阳性患者1例报道[J]. 山东大学学报 (医学版), 2022, 60(2): 60-64. |
[7] | 徐兵,李勇,刘明,刘永辉. 沉默PRRX1基因表达可增强前列腺癌耐药细胞株PC-3/DTX对多西他赛的敏感性[J]. 山东大学学报 (医学版), 2021, 59(6): 103-110. |
[8] | 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27. |
[9] | 张小红,周云,杜秋莹,任慧欣,王超群. Atg7-siRNA通过调节精氨酸循环干扰食管癌ECA109细胞放疗敏感性[J]. 山东大学学报 (医学版), 2021, 59(4): 28-34. |
[10] | 隋荣翠,韩书慧,张宪昭,范新泰,王娜,侯凌霄,许安廷. 小鼠内淋巴囊原代上皮细胞L型钙离子通道定位表达[J]. 山东大学学报 (医学版), 2021, 59(10): 17-22. |
[11] | 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15-23. |
[12] | 苏晓慧,孙明琪,张梅洁,方丽,罗丹丹,陈国平,于春晓,管庆波. 穗加精液分析自动检测系统与血细胞计数板人工计数法在小鼠精液分析中的应用[J]. 山东大学学报 (医学版), 2018, 56(6): 1-5. |
[13] | 蒿魁元,赵圣,张宇,崔迪,荆翌峰,夏术阶,韩邦旻. 雄激素阻断对膀胱癌UM-UC-3细胞自噬与凋亡的影响[J]. 山东大学学报 (医学版), 2018, 56(3): 41-47. |
[14] | 丁长宽,陈健行. 蛋白酶体抑制剂硼替佐米联合顺铂对宫颈癌细胞增殖的影响[J]. 山东大学学报 (医学版), 2018, 56(1): 70-75. |
[15] | 赵姗姗,李晓梅,梁婷,张超,宋静,侯桂华. 自噬对125I-anti-TLR5同种移植排斥靶向显像的影响[J]. 山东大学学报(医学版), 2017, 55(9): 46-52. |
|