山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (3): 24-28.doi: 10.6040/j.issn.1671-7554.0.2021.1264
• • 上一篇
菅天孜1,陈诺2,李理想1,李延青1,李艳3
JIAN Tianzi1, CHEN Nuo2, LI Lixiang1, LI Yanqing1, LI Yan3
摘要: 目的 利用葡聚糖硫酸钠(DSS)诱导小鼠溃疡性结肠炎模型,探讨两种常见的单糖-D-甘露糖和葡萄糖对溃疡性结肠炎的影响。 方法 60只C57BL/6小鼠随机分成6组:对照组、D-甘露糖组、葡萄糖组、DSS组、DSS+D-甘露糖组和DSS+葡萄糖组,每组10只,分别自由饮无菌水、20% D-甘露糖、20%葡萄糖、3.5%DSS、3.5%DSS+20%甘露糖、3.5%DSS+20%葡萄糖,共7 d。每日观察并记录小鼠一般情况、体质量、疾病活动指数(DAI)、粪便的性状及隐血情况。7 d后处死小鼠,分离结肠,测量其长度并进行组织病理学观察;取脾脏,观察并测量其大体形态长度、质量。 结果 对照组小鼠一般情况良好,DSS组小鼠出现体质量下降、腹泻、肉眼血便等结肠炎表现。与DSS组比较, DSS+D-甘露糖组体质量较高[(84.02±3.47)g vs( 89.71±2.02)g,P<0.001],DAI评分显著降低[(3.10±0.77)vs(2.43±0.32),P=0.002],结肠长度明显增加[(5.20±0.03)cm vs(6.87±0.19)cm,P<0.001],组织病理学评分较低[(6.00±0.37)vs(4.25±0.28),P<0.001];DSS+葡萄糖组体质量急剧降低(P<0.001),DAI评分显著升高(P=0.001),肠出血加重(P<0.001),组织病理学评分较高(P<0.001)。 结论 D-甘露糖可有效改善UC小鼠临床症状,葡萄糖则加重UC小鼠的临床症状。
中图分类号:
[1] Wirtz S, Popp V, Kindermann M, et al. Chemically induced mouse models of acute and chronic intestinal inflammation [J]. Nat Protoc, 2017, 12(7): 1295-1309. [2] Fitch C, Keim KS. Position of the academy of nutrition and dietetics: use of nutritive and nonnutritive sweeteners [J]. J Acad Nutr Diet, 2012, 112(5): 739-758. [3] Zhang D, Jin W, Wu R, et al. High glucose intake exacerbates autoimmunity through Reactive-Oxygen-Species-Mediated TGF-β cytokine activation [J]. Immunity, 2019, 51(4): 671-681. [4] Khan S, Waliullah S, Godfrey V, et al. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice [J]. Sci Transl Med, 2020, 12(567):eaay 6218. doi: 10.1126/scitranslmed.aay6218. [5] Torretta S, Scagliola A, Ricci L, et al. D-mannose suppresses macrophage IL-1beta production [J]. Nat Commun, 2020, 11(1): 6343. doi: 10.1038/s41467-020-20164-6. [6] 王浩. 甘露糖对溃疡性结肠炎相关结直肠癌变的预防作用及机制初步探究[D]. 无锡: 江南大学, 2020. [7] Yan X, Liu XY, Zhang D, et al. Construction of a sustainable 3-hydroxybutyrate-producing probiotic Escherichia coli for treatment of colitis [J]. Cell Mol Immunol, 2021, 18(10): 2344-2357. [8] Cooper HS, Murthy SN, Shah RS, et al. Clinicopathologic study of dextran sulfate sodium experimental murine colitis [J]. Lab Invest, 1993, 69(2): 238-249. [9] Li G, Lin J, Zhang C, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease [J]. Gut Microbes, 2021, 13(1): 1968257. doi: 10.1080/19490976.2021.1968257. [10] Han R, Ma Y, Xiao J, et al. The possible mechanism of the protective effect of a sulfated polysaccharide from Gracilaria Lemaneiformis against colitis induced by dextran sulfate sodium in mice [J]. Food Chem Toxicol, 2021, 149: 112001.doi: 10.1016/j.fct.2021.112001. [11] Mishra V, Bose A, Kiran S, et al. Gut-associated cGMP mediates colitis and dysbiosis in a mouse model of an activating mutation in GUCY2C [J]. J Exp Med, 2021, 218(11): e20210479. doi: 10.1084/jem.20210479. [12] Obermeier, Kojouharoff, Hans, et al. Interferon-gamma(IFN-γ)- and tumour necrosis factor(TNF)-induced nitric oxide as toxic effector molecule in chronic dextran sulphate sodium(DSS)-induced colitis in mice [J]. Clin Exp Immunol, 1999, 116(2): 238-245. [13] Islam J, Agista AZ, Watanabe K, et al. Fermented rice bran supplementation attenuates chronic colitis-associated extraintestinal manifestations in female C57BL/6N mice [J]. J Nutr Biochem, 2021, 99: 108855. doi: 10.1016/j.jnutbio.2021.108855. [14] Zuo T, Ng SC. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease [J]. Front Microbiol, 2018, 9: 2247. doi: 10.3389/fmicb.2018.02247. [15] Kim JJ, Shajib MS, Manocha MM, et al. Investigating intestinal inflammation in DSS-induced model of IBD [J]. J Vis Exp, 2012(60): 3678. doi: 10.3791/3678. [16] Coccia M, Harrison OJ, Schiering C, et al. IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+)Th17 cells [J]. J Exp Med, 2012, 209(9): 1595-1609. [17] Eichele DD, Kharbanda KK. Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis [J]. World J Gastroenterol, 2017, 23(33): 6016-6029. [18] Kim YE, Lee M, Gu H, et al. HIF-1alpha activation in myeloid cells accelerates dextran sodium sulfate-induced colitis progression in mice [J]. Dis Model Mech, 2018, 11(7):dmm 033241. doi: 10.1242/dmm.033241. [19] Sheng Y, Wu T, Dai Y, et al. The effect of 6-gingerol on inflammatory response and Th17/Treg balance in DSS-induced ulcerative colitis mice [J]. Ann Transl Med, 2020, 8(7): 442. doi: 10.21037/atm.2020.03. [20] Cui L, Guan X, Ding W, et al. Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota [J]. Int J Biol Macromol, 2021, 166: 1035-1045. doi: 10.1016/j.ijbiomac.2020.10.259. [21] Dong F, Xiao F, Li X, et al. Pediococcus pentosaceus CECT 8330 protects DSS-induced colitis and regulates the intestinal microbiota and immune responses in mice [J]. J Transl Med, 2022, 20(1): 33. doi: 10.1186/s12967-022-03235-8. [22] Na YR, Stakenborg M, Seok SH, et al. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD [J]. Nat Rev Gastroenterol Hepatol, 2019, 16(9): 531-543. [23] Asadirad A, Baghaei K, Hashemi SM, et al. Dendritic cell immunotherapy with miR-155 enriched tumor-derived exosome suppressed cancer growth and induced antitumor immune responses in murine model of colorectal cancer induced by CT26 cell line [J]. Int Immunopharmacol, 2022, 104: 108493. doi: 10.1016/j.intimp.2021.108493. [24] Chen H, Huang N, Li J, et al. Immune suppression reversal of the spleen: a promising strategy for improving the survival rate of sepsis in rats [J]. Am J Transl Res, 2021, 13(8): 9005-9014. [25] Khan N, Kaur S, Knuth CM, et al. CNS-Spleen Axis-a close Interplay in mediating inflammatory responses in burn patients and a key to novel burn therapeutics [J]. Front Immunol, 2021, 12: 720221. doi: 10.3389/fimmu.2021.720221. [26] LeBaron TW, Asgharzadeh F, Khazei M, et al. Molecular hydrogen is comparable to sulfasalazine as a treatment for DSS-induced colitis in mice [J]. EXCLI J, 2021, 20: 1106-1117. doi: 10.17179/excli2021-3762. [27] 阎凯, 宋京海, 牛小娟, 等. 葡聚糖硫酸钠诱导BALB/c小鼠肠炎模型淋巴细胞功能状态研究[J]. 中华实验外科杂志, 2016, 33(6): 1561-1564. YAN Kai, SONG Jinghai, NIU Xiaojuan, et al. Functional state of lymphocytes in colitis mice of BALB/c strain induced by dextran sulfate sodium [J]. Chinese Journal of Experimental Surgery [J]. 2016, 33(6): 1561-1564. |
[1] | 杨晓倩 季静 刘娜 郭冬梅 崔癉. 三氯化铁及络合铁的抗银屑病作用研究[J]. 山东大学学报(医学版), 2209, 47(6): 114-117. |
[2] | 段淑红 刘凯 尹海燕 赵世斗 刘丰韬. 凝集素受体WGA、RCA和ECL在过量维甲酸致昆明小鼠腭裂发生中的作用[J]. 山东大学学报(医学版), 2209, 47(6): 47-. |
[3] | 哈灵侠,殷婷,吴阳阳,黎维霞,杜玉冬. 多囊卵巢综合征患者中胰岛素抵抗与子宫内膜局部炎症因子及葡萄糖转运蛋白-4表达的相关性[J]. 山东大学学报 (医学版), 2021, 59(11): 41-47. |
[4] | 隋荣翠,韩书慧,张宪昭,范新泰,王娜,侯凌霄,许安廷. 小鼠内淋巴囊原代上皮细胞L型钙离子通道定位表达[J]. 山东大学学报 (医学版), 2021, 59(10): 17-22. |
[5] | 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15-23. |
[6] | 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1-6. |
[7] | 付振美,马铭泽. 溃疡性结肠炎患者肠黏膜P糖蛋白的表达及其临床意义[J]. 山东大学学报 (医学版), 2020, 58(12): 54-59. |
[8] | 秦鲁敏,孙爱友,王倩文,高景文,魏东芝. 高残糖-pH反复重碱化震荡策略提高乳酸片球菌素产量[J]. 山东大学学报(医学版), 2017, 55(9): 41-45. |
[9] | 焦凤萍,王玉,于爱莲,田兆菊,杨树林. 重组质粒pcDNA3.1(-)-P6-gBCTL-TBK-1的免疫效果评价[J]. 山东大学学报(医学版), 2017, 55(3): 75-78. |
[10] | 李洪志,申永超,刘洁婷,赵孝金,初彦辉,袁晓环. 11β-HSD1抑制剂改善db/db小鼠胰岛素敏感性的实验研究[J]. 山东大学学报(医学版), 2017, 55(10): 59-64. |
[11] | 郑倩倩,刘倜,谢克勤,林艺,李忠,王显军,毕振强,温红玲,宋艳艳,赵丽. 大蒜油在小鼠体内抗流感病毒作用[J]. 山东大学学报(医学版), 2016, 54(7): 23-27. |
[12] | 赵栋燕,于岩波,左秀丽. 脑源性神经营养因子在小鼠肠黏膜屏障中的作用[J]. 山东大学学报(医学版), 2016, 54(7): 1-5. |
[13] | 赵琰,郑亚冰,闫新峰,张虎,常晓天. 筛选类风湿关节炎中糖代谢关键基因的探讨[J]. 山东大学学报(医学版), 2016, 54(3): 30-35. |
[14] | 李懋禹,唐诗,杜怡峰. TRB3在APP/PS1转基因小鼠脑内的表达及其意义[J]. 山东大学学报(医学版), 2016, 54(10): 1-5. |
[15] | 贾俊伟,周雪颖,李秋红,于凯,周国钰,周盛年. Annexin A7在匹罗卡品癫痫小鼠模型脑组织中的表达[J]. 山东大学学报(医学版), 2016, 54(10): 6-10. |
|