您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (7): 1-5.doi: 10.6040/j.issn.1671-7554.0.2015.1340

• •    下一篇

脑源性神经营养因子在小鼠肠黏膜屏障中的作用

赵栋燕,于岩波,左秀丽   

  1. 山东大学齐鲁医院消化内科, 山东 济南 250012
  • 收稿日期:2015-12-25 出版日期:2016-07-10 发布日期:2016-07-10
  • 通讯作者: 左秀丽. E-mail:zuoxiuli@sina.com E-mail:zuoxiuli@sina.com
  • 基金资助:
    国家自然科学基金(81208371,81370495)

Brain-derived neurotrophic factor modulates intestinal barrier integrity in mice

ZHAO Dongyan, YU Yanbo, ZUO Xiuli   

  1. Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Received:2015-12-25 Online:2016-07-10 Published:2016-07-10

摘要: 目的 运用基因敲除小鼠模型探讨脑源性神经营养因子(BDNF)在小鼠肠上皮屏障的作用。 方法 取BDNF+/+小鼠与BDNF+/-小鼠回肠及结肠黏膜,用透射电镜观察肠黏膜上皮的超微结构。免疫组织化学检测紧密连接蛋白ZO-1与occludin在结肠黏膜表达的变化,免疫印迹测定紧密连接蛋白claudin-1与claudin-2在结肠黏膜表达的差异。 结果 与BDNF+/+小鼠相比,BDNF+/-小鼠电镜下回肠上皮未见明显异常,结肠上皮屏障破坏,表现为微绒毛缺失、细胞间隙增宽以及细菌入侵;BDNF+/-小鼠结肠上皮细胞紧密连接蛋白occludin、ZO-1以及claudin-1表达下调,而claudin-2表达上调。 结论 BDNF可能在小鼠结肠上皮屏障功能的发挥中起到调控作用。

关键词: 紧密连接蛋白, 脑源性神经营养因子, 肠屏障, 小鼠

Abstract: Objective To investigate the effects of brain-derived neurotrophic factor(BDNF)on intestinal barrier integrity in mice. Methods Ileal tissues and colonic tissues from BDNF+/+ mice and BDNF+/- mice were prepared. The intestinal epithelial structure was detected by transmission electron microscopy. Expressions and distributions of tight junction proteins(occludin and ZO-1)in the colonic mucosa were evaluated by immunohistochemistry. Expressions of tight junction proteins(claudin-1 and claudin-2)in the colonic mucosa were evaluated by Western blotting. Results Compared with BDNF+/+ mice, BDNF+/- mice displayed integral ileal epithelial barrier and impaired colonic mucosa integrity which was characterized by diminished microvilli, widened intercellular space and bacteria invasion in the colonic mucosa. BDNF+/- mice also exhibited increased expression of claudin-2 and decreased expression of occludin, ZO-1 and claudin-1 in the colonic mucosa. Conclusion BDNF may play a role in regulating the colonic epithelial barrier in mice.

Key words: Brain-derived neurotrophic factor, Intestinal barrier, Mice, Tight junction proteins

中图分类号: 

  • R574
[1] Yu YB, Zuo XL, Zhao QJ, et al. Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome[J]. Gut, 2012, 61(5): 685-694.
[2] Donovan MJ, Lin MI, Wiegn P, et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization[J]. Development, 2000, 127(21): 4531-4540.
[3] Matsuda S, Fujita T, Kajiya M, et al. Brain-derived neurotrophic factor prevents the endothelial barrier dysfunction induced by interleukin-1β and tumor necrosis factor-α[J]. J Periodontal Res, 2015, 50(4): 444-451.
[4] Quadri SK. Cross talk between focal adhesion kinase and cadherins: Role in regulating endothelial barrier function[J]. Microvasc Res, 2012, 83(1): 3-11.
[5] Cunningham KE, Turner JR. Myosin light chain kinase: pulling the strings of epithelial tight junction function[J]. Ann N Y Acad Sci, 2012, 1258(1): 34-42.
[6] Shen L. Tight junctions on the move: molecular mechanisms for epithelial barrier regulation[J]. Ann N Y Acad Sci, 2012, 1258(1): 9-18.
[7] 陈飞雪, 于岩波, 王鹏, 等. 脑源性神经营养因子对小鼠回肠及结肠平滑肌收缩活动的影响及其机制[J]. 山东大学学报(医学版), 2012, 50(4): 42-46. CHEN Feixue, YU Yanbo, WANG Peng, et al. Brain-derived neurotrophic factor influences contractile activity in the isolated ileum and colon of mice[J]. Journal of Shandong University(Health Science), 2012, 50(4): 42-46.
[8] Vijendravarma RK, Narasimha S, Chakrabarti S, et al. Gut physiology mediates a trade-off between adaptation to malnutrition and susceptibility to food-borne pathogens[J]. Ecol Lett, 2015, 18(10): 1078-1086.
[9] Musch MW, Clarke LL, Mamah D, et al. T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase[J]. J Clin Invest, 2002, 110(11): 1739-1748.
[10] Gecse K, Roka R, Ferrier L, et al. Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity[J]. Gut, 2008, 57(5): 591-599.
[11] Rauhavirta T, Lindfors K, Koskinen O, et al. Impaired epithelial integrity in the duodenal mucosa in early stages of celiac disease[J]. Transl Res, 2014, 164(3): 223-231.
[12] Annaházi A, Ferrier L, Bézirard V, et al. Luminal cysteine-proteases degrade colonic tight junction structure and are responsible for abdominal pain in constipation-predominant IBS[J]. Am J Gastroenterol, 2013, 108(8): 1322-1331.
[13] Erickson JT, Conover JC, Borday V, et al. Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing[J]. J Neurosci, 1996, 16(17): 5361-5371.
[14] Amasheh S, Fromm M, Günzel D. Claudins of intestine and nephron-a correlation of molecular tight junction structure and barrier function[J]. Acta Physiol, 2011, 201(1): 133-140.
[15] Shen L, Weber CR, Raleigh DR, et al. Tight junction pore and leak pathways: a dynamic duo[J]. Annu Rev Physiol, 2011, 73: 283-309.
[16] Zhang YG, Wu S, Xia Y, et al. Salmonella infection upregulates the leaky protein claudin-2 in intestinal epithelial cells[J]. PLoS one, 2013, 8(3): e58606. doi: 10.1371/journal.pone.0058606.
[17] Rosenthal R, Milatz S, Krug SM, et al. Claudin-2, a component of the tight junction, forms a paracellular water channel[J]. J Cell Sci, 2010, 123(11): 1913-1921.
[18] Alan SL, Cheng MH, Coalson RD. Calcium inhibits paracellular sodium conductance through claudin-2 by competitive binding[J]. J Biol Chem, 2010, 285(47): 37060-37069.
[19] Martínez C, Lobo B, Pigrau M, et al. Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier[J]. Gut, 2013, 62(8): 1160-1168.
[1] 杨晓倩 季静 刘娜 郭冬梅 崔癉. 三氯化铁及络合铁的抗银屑病作用研究[J]. 山东大学学报(医学版), 2209, 47(6): 114-117.
[2] 段淑红 刘凯 尹海燕 赵世斗 刘丰韬. 凝集素受体WGA、RCA和ECL在过量维甲酸致昆明小鼠腭裂发生中的作用[J]. 山东大学学报(医学版), 2209, 47(6): 47-.
[3] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1-6.
[4] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15-23.
[5] 张文雪,徐丽东,张明明,郭传国,左秀丽. NR2B通过mBDNF参与肠易激综合征内脏高敏感的发生[J]. 山东大学学报(医学版), 2017, 55(7): 17-22.
[6] 陈磊,刘东晓,李开鸣,宋新强,曾宪思,蒋丽杰. 有序胶原材料联合CBD-BDNF对大鼠脊髓损伤的修复作用[J]. 山东大学学报(医学版), 2017, 55(5): 43-48.
[7] 焦凤萍,王玉,于爱莲,田兆菊,杨树林. 重组质粒pcDNA3.1(-)-P6-gBCTL-TBK-1的免疫效果评价[J]. 山东大学学报(医学版), 2017, 55(3): 75-78.
[8] 李洪志,申永超,刘洁婷,赵孝金,初彦辉,袁晓环. 11β-HSD1抑制剂改善db/db小鼠胰岛素敏感性的实验研究[J]. 山东大学学报(医学版), 2017, 55(10): 59-64.
[9] 郑倩倩,刘倜,谢克勤,林艺,李忠,王显军,毕振强,温红玲,宋艳艳,赵丽. 大蒜油在小鼠体内抗流感病毒作用[J]. 山东大学学报(医学版), 2016, 54(7): 23-27.
[10] 魏秀娟,吴修胤, 佟冬冬,李静,杨晓露,张风河. BDNF/TrkB在舌鳞状细胞癌中的表达及BDNF对其增殖能力的影响[J]. 山东大学学报(医学版), 2016, 54(6): 50-54.
[11] 袁秀玉,董原君,梁霞,胡敏,张桂青. 创伤性应激对大鼠海马BDNF表达的影响[J]. 山东大学学报(医学版), 2016, 54(4): 37-41.
[12] 李懋禹,唐诗,杜怡峰. TRB3在APP/PS1转基因小鼠脑内的表达及其意义[J]. 山东大学学报(医学版), 2016, 54(10): 1-5.
[13] 贾俊伟,周雪颖,李秋红,于凯,周国钰,周盛年. Annexin A7在匹罗卡品癫痫小鼠模型脑组织中的表达[J]. 山东大学学报(医学版), 2016, 54(10): 6-10.
[14] 杨倩倩,孙高英,曹智新,尹海燕,王海波,李建峰. NLRX1在C57BL/6小鼠耳蜗毛细胞内的表达[J]. 山东大学学报(医学版), 2016, 54(1): 11-16.
[15] 翟红运, 张登禄, 王光杰, 孔峰, 程广辉, 赵升田. 小鼠胚胎干细胞分泌因子对前列腺癌细胞作用的体外研究[J]. 山东大学学报(医学版), 2015, 53(9): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!