山东大学学报 (医学版) ›› 2020, Vol. 1 ›› Issue (7): 7-14.doi: 10.6040/j.issn.1671-7554.0.2019.1007
张宝文1,雷香丽1,李瑾娜2,罗湘俊1,邹容1
ZHANG Baowen1, LEI Xiangli1, LI Jinna2, LUO Xiangjun1, ZOU Rong1
摘要: 目的 探讨miR-21-5p对2型糖尿病肾病(T2DN)小鼠肾组织中组织金属蛋白酶组织抑制因子3(TIMP3)表达以及对肾脏系膜细胞增殖及细胞外基质堆积的影响。 方法 选取10只雄性db/m小鼠作为正常对照(Control)组,另选30只SPF级雄性db/db T2DN小鼠随机分成模型(T2DN)组、miR-21-5p激动剂(miR-21-5p agomir)组和miR-21-5p拮抗剂(miR-21-5p antagomir)组,每组10只。分别给予生理盐水、miR-21-5p agomir、miR-21-5p antagomir尾静脉注射,每3 d注射1次,共7次。qRT-PCR检测各组小鼠肾脏组织中miR-21-5p表达水平;ELISA法检测各组小鼠24 h尿蛋白(Upro/24 h)、肌酐(Scr)和尿素氮(BUN)的表达水平;HE染色观察各组小鼠肾脏病理变化;PAS染色观察小鼠肾小球细胞外基质堆积情况;Western bloting法检测肾组织TIMP3、Col IV及FN蛋白的表达水平;双荧光素酶报告基因实验检测miR-21-5p和TIMP3的靶向关系。 结果 与Control组比较,T2DN组小鼠Upro/24 h、Scr和BUN水平均升高(tUpro/24 h=84.67,P<0.001;tScr=16.81,P<0.001;tBUN=19.26,P<0.001),miR-21-5p agomir组小鼠Upro/24 h、Scr和BUN水平均升高(tUpro/24 h=100.44,P<0.001;tScr=36.76,P<0.001;tBUN=52.42,P<0.001),肾脏肾小球系膜增生,基底膜增厚,系膜基质相对面积增加(t=9.10,P<0.001;t=14.16,P<0.001),TIMP3蛋白异常低表达(t=8.51,P=0.001;t=12.66,P<0.001),纤维化蛋白Col IV(t=10.04,P<0.001;t=23.54,P<0.001)和FN(t=11.49,P<0.001;t=22.34,P<0.001)异常高表达;与T2DN组比较,miR-21-5p antagomir组小鼠Upro/24 h、Scr和BUN水平均降低(tUpro/24 h=20.31,P<0.001;tScr=7.90,P<0.001;tBUN=8.91,P<0.001),肾脏肾小球系膜增生和基底膜增厚缓解,系膜基质相对面积降低(t=7.96,P=0.001),TIMP3蛋白升高(t=11.71,P<0.001),纤维化蛋白Col IV和FN降低(tCol IV=6.58,P=0.003;tFN=6.27,P=0.003);miR-21-5p agomir组小鼠与miR-21-5p antagomir组小鼠生化指标和肾脏肾小球的病症相反;双荧光素酶结果显示,miR-21-5p能靶向调控TIMP3基因的表达。 结论 miR-21-5p通过靶向调控TIMP3抑制T2DN小鼠肾脏系膜细胞的增殖及细胞外基质的堆积。
中图分类号:
[1] | 裘静英, 董志春, 王璟. 参芪降糖颗粒联合阿托伐他汀对2型糖尿病合并代谢综合征胰岛β细胞功能、胰岛素抵抗和血管内皮细胞功能的影响[J]. 中华中医药学刊, 2019, 37(7): 1725-1728. QIU Jingying, DONG Zhichun, WANG Jing. Effects of shenqi jiangtang granule combined with atorvastatin on islet β cell function, insulin resistance and vascular endothelial cell function in patients with type 2 diabetes combined with metabolic syndrome[J]. Chinese Archives of Traditional Chinese Medicine, 2019, 37(7): 1725-1728. |
[2] | Kirkman MS, Mahmud H, Korytkowski MT. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes mellitus[J]. Endocrinol Metab Clin North Am, 2018, 47(1): 81-96. |
[3] | Zang L, Shimada Y, Nakayama H, et al. Therapeutic silencing of centromere protein X ameliorates hyperglycemia in zebrafish and mouse models of type 2 diabetes mellitus[J]. Front Genet, 2019, 10: 693. doi: 10.3389/fgene. 2019.00693. |
[4] | Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials[J]. BMJ, 2011, 343: d4169. doi: 10.1136/bmj. d4169. |
[5] | 宋孟晓, 王燕, 刘进忠. miR-222-5p在人根尖乳头干细胞成骨/成牙本质向分化中的作用[J]. 山东大学学报(医学版), 2020, 58(3): 87-93. SONG Mengxiao, WANG Yan, LIU Jinzhong. MiR-222-5p promotes osteo/odontogenic differentiation of stem cells from human apical papilla[J]. Journal of Shandong University(Health Sciences), 2020, 58(3): 87-93. |
[6] | Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies[J]. Diabetologia, 2015, 58(5): 900-911. |
[7] | Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes[J]. Circ Res, 2010, 107(6): 810-817. |
[8] | Ong J, Woldhuis RR, Boudewijn IM, et al. Age-related gene and miRNA expression changes in airways of healthy individuals[J]. Sci Rep, 2019, 9(1):1-8. |
[9] | Feng Y, Ge Y, Wu M, et al. Long non-coding RNAs regulate inflammation in diabetic peripheral neuropathy by acting as ceRNAs targeting miR-146a-5p[J]. Diabetes Metab Syndr Obes, 2020, 13: 413-422. doi: 10.2147/DMSO.S242789. |
[10] | 林海燕, 王红梅, 祝诚. 转化生长因子-β对基质金属蛋白酶及其组织抑制因子调控的研究进展[J]. 生物化学与生物物理进展, 2003, 30(1): 7-12. LIN Haiyan, WANG Hongmei, ZHU Cheng. Regulation of matrix metalloproteinases and their tissue inhibitors by transforming growth factor-β[J]. Prog Biochem Biophys, 2003, 30(1): 7-12. |
[11] | GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015, 385(9963): 117-171. |
[12] | Pourghasem M, Shafi H, Babazadeh Z. Histological changes of kidney in diabetic nephropathy[J]. Caspian J Intern Med, 2015, 6(3): 120-127. |
[13] | 金海燕,张炎,马小莉,等. miR-122与miR-33a在2型糖尿病合并冠心病患者中的表达[J]. 山东大学学报(医学版), 2020, 58(3): 94-98. JIN Haiyan, ZHANG Yan, MA Xiaoli, et al. Expression of miR-122 and miR-33a in patients with type 2 diabetes complicated with coronary artery disease[J]. Journal of Shandong University(Health Sciences), 2020, 58(3): 94-98. |
[14] | Lu S, Dong L, Jing X, et al. Abnormal lncRNA CCAT1/microRNA-155/SIRT1 axis promoted inflammatory response and apoptosis of tubular epithelial cells in LPS caused acute kidney injury[J]. Mitochondrion, 2020: S1567-7249(19)30066-2. doi: 10.1016/j.mito.2020.03.010. |
[15] | Geng X, Song N, Zhao S, et al. LncRNA GAS5 promotes apoptosis as a competing endogenous RNA for miR-21 via thrombospondin 1 in ischemic AKI[J]. Cell Death Discov, 2020, 6: 19. doi: 10.1038/s41420-020-0253-8. |
[16] | Hennino MF, Buob D, Van der Hauwaert C, et al. miR-21-5p renal expression is associated with fibrosis and renal survival in patients with IgA nephropathy[J]. Sci Rep, 2016, 6: 27209. doi: 10.1038/srep27209. |
[17] | Faragalla H, Youssef YM, Scorilas A, et al. The clinical utility of miR-21 as a diagnostic and prognostic marker for renal cell carcinoma[J]. J Mol Diagn, 2012, 14(4): 385-392. |
[18] | Srivastava SP, Goodwin JE, Kanasaki K, et al. Inhibition of angiotensin-converting enzyme ameliorates renal fibrosis by mitigating DPP-4 level and restoring antifibrotic microRNAs[J]. Genes(Basel), 2020, 11(2): E211. doi: 10.3390/genes11020211. |
[19] | Li N, Wang Z, Gao F, et al. Melatonin ameliorates renal fibroblast-myofibroblast transdifferentiation and renal fibrosis through miR-21-5p regulation[J]. J Cell Mol Med, 2020. doi: 10.1111/jcmm.15221. |
[20] | Dey N, Das F, Mariappan MM, et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes[J]. J Biol Chem, 2011, 286(29): 25586-25603. |
[21] | Baker MA, Davis SJ, Liu P, et al. Tissue-specific microRNA expression patterns in four types of kidney disease[J]. J Am Soc Nephrol, 2017, 28(10): 2985-2992. |
[22] | Wang JY, Gao YB, Zhang N, et al. miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy[J]. Mol Cell Endocrinol, 2014, 392(1-2): 163-172. |
[23] | Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease[J]. Adv Pharmacol, 2018, 81:241-330. doi: 10.1016/bs.apha.2017.08.002. |
[24] | Schrimpf C, Xin C, Campanholle G, et al. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury[J]. J Am Soc Nephrol, 2012, 23(5): 868-883. |
[25] | Kassiri Z, Defamie V, Hariri M, et al. Simultaneous transforming growth factor β-tumor necrosis factor activation and cross-talk cause aberrant remodeling response and myocardial fibrosis in Timp3-deficient heart[J]. J Biol Chem, 2009, 284(43): 29893-29904. |
[26] | Fiorentino L, Cavalera M, Mavilio M, et al. Regulation of TIMP3 in diabetic nephropathy: a role for micro-RNAs[J]. Acta Diabetologica, 2013, 50(6): 965-969. |
[1] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[2] | 王正阳,夏艳,师凯旋,陶琨,王小杰. 曲美替尼在卵巢癌中对PAX8的表达作用[J]. 山东大学学报 (医学版), 2021, 59(10): 23-29. |
[3] | 杜甜甜,李娟,赵颖慧,段伟丽,王景,王允山,杜鲁涛,王传新. 长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 57-67. |
[4] | 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32-37. |
[5] | 李孝峰,杜晓益,刘海南,刘承,范医东. 小檗碱对人肾细胞癌细胞增殖、凋亡、DNA断裂及损伤修复的影响[J]. 山东大学学报 (医学版), 2018, 56(3): 54-59. |
[6] | 黄平,张坤,李芳,黄国宝,延冰,肖东杰,汪运山,刘华. 脐带和脂肪源性间充质干细胞生物学特性比较[J]. 山东大学学报 (医学版), 2018, 56(3): 72-78. |
[7] | 杨飞龙,周尊林,任巨超,闫磊,刘海南, 张温花,俞能旺,李大伟,徐忠华. 肝癌衍生生长因子对前列腺癌细胞增殖的影响及其机制[J]. 山东大学学报 (医学版), 2018, 56(1): 62-69. |
[8] | 史培堃,曾贝妮,吴伟芳,胡晓燕,马天加,周亚滨. Keap1在肾细胞癌中的表达及其作用[J]. 山东大学学报(医学版), 2017, 55(3): 94-99. |
[9] | 刘振中, 姜笃银, 王魏, 宗宪磊, 张基勋, 刘磊. 转化生长因子-β1噬菌体模拟肽促进成纤维细胞增殖的效果[J]. 山东大学学报(医学版), 2015, 53(3): 50-55. |
[10] | 涂燕, 李振江, 汤爱平, 费妍, 李慧慧, 李剑, 贺文凤. 干扰CD147表达抑制白血病细胞SHI-1增殖及移行[J]. 山东大学学报(医学版), 2014, 52(9): 1-5. |
[11] | 赵华1,徐洋洋2,鹿向东3,徐同江1 . Ki-67、PTTG、VEGF与垂体瘤卒中的相关性[J]. 山东大学学报(医学版), 2014, 52(5): 82-85. |
[12] | 徐敏,庄向华,孙爱丽,倪一虹,孙福敦,陈诗鸿. 高糖对RSC96雪旺细胞的损伤机制[J]. 山东大学学报(医学版), 2014, 52(5): 44-48. |
[13] | 周静, 郑亚冰, 闫莉, 常晓天, 赵珊, 荣风年. 雌激素及顺铂对卵巢癌细胞A2780PADI4的表达及其细胞增殖的影响[J]. 山东大学学报(医学版), 2014, 52(12): 30-34. |
[14] | 王晓蕾1,郏雁飞2,郑燕2,刘华2,汪运山2. STAT3真核表达质粒的构建及对胃癌细胞增殖的影响[J]. 山东大学学报(医学版), 2013, 51(9): 45-49. |
[15] | 李亚男1,蒋玲1,胡秀慧1,张晓黎1,李杰2. 碘酸钾和双酚A对甲状腺乳头状癌细胞增殖的影响[J]. 山东大学学报(医学版), 2013, 51(3): 52-57. |
|