您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (8): 74-92.doi: 10.6040/j.issn.1671-7554.0.2024.0562

• • 上一篇    

始基卵泡激活调控的研究进展

潘静1,于潇2,刘金星2,刘鹏飞2   

  • 发布日期:2024-09-20
  • 通讯作者: 刘鹏飞. E-mail:wrxhmy@126.com刘金星. E-mail:ljx276@sina.com
  • 基金资助:
    国家自然科学基金项目(82104917);山东省自然科学基金(ZR2021MH079)

Research progress on the regulation of primordial follicle activation

PAN Jing1, YU Xiao2, LIU Jinxing2, LIU Pengfei2   

  1. 1. The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China;
    2. Gynecology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
  • Published:2024-09-20

摘要: 以早发性卵巢功能不全(premature ovarian insufficiency, POI)为代表的卵巢功能减退性疾病发生的本质是卵巢中卵泡数量的减少或(和)卵泡质量的降低,严重影响女性的生殖健康。卵巢功能减退患者的卵巢中仍然存在部分始基卵泡(primordial follicles, PFs),激活剩余的PFs,使其发育为成熟卵泡,可作为改善卵巢功能的途径之一。PFs是卵泡发育的起点,其休眠和激活的调节是女性维持生育力的重要基础。因此,本文从分子水平探讨PFs激活相关因子及信号通路对卵巢功能的作用机制,重点围绕维持PFs休眠状态的叉头框转录因子O3a(forkhead box O3a, FOXO3a)、叉头框转录因子L2(forkhead box L2, FOXL2)、生殖系α因子(factor in the germline alpha, FIGLA)、LIM同源盒基因8(LIM homeobox 8, LHX8)、精卵发生特异性HLH转录因子1/2(spermatogenesis and oogenesis specific basi chelix-loop-helix transcription factor 1/2, SOHLH1/2)、细胞周期蛋白依赖性激酶抑制物1B(cyclin-dependent kinase inhibitor 1B, CDKN1B)、促进PFs激活的新生儿卵巢同源盒蛋白(newborn ovary homeobox gene, NOBOX)、生长分化因子9(growth differentiation factor 9, GDF9)、骨形态发生蛋白15(bone morphogenetic protein 15, BMP15)、碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)、白血病抑制因子(leukemia inhibitory factor, LIF),以及参与PFs激活调控的PI3K/AKT/FOXO3a、mTOR、Hippo、TGF-β、AMPK、Notch、cAMP和Wnt等信号通路进行系统性总结和阐述,以期为卵巢功能减退性疾病的预防和治疗提供理论依据及潜在药物靶点。

关键词: 卵巢功能减退性疾病, 始基卵泡激活, 抑制因子, 促进因子, 信号通路

Abstract: Ovarian hypofunction diseases, represented by premature ovarian insufficiency(POI), occurs when the number or/and the quality of the follicles in the ovaries decrease, which seriously affects womens reproductive health. Some primordial follicles(PFs)still exist in the ovaries of patients with hypofunction diseases, and activation of the remaining PFs to mature follicles can be one of the ways to improve ovarian function. PFs are the starting point of follicular development, and the regulation of their dormancy and activation is an important basis for the maintenance of female fertility. This article systematically reviews and elucidates the molecular mechanisms underlying the activation of PFs, focusing on key factors such as forkhead box O3a(FOXO3a), forkhead box L2(FOXL2), factor in the germline alpha(FIGLA), LIM homeobox 8(LHX8), spermatogenesis and oogenesis specific basic helix-loop-helix transcription factors 1/2(SOHLH1/2), cyclin-dependent kinase inhibitor 1B(CDKN1B/p27 Kip1), newborn ovary homeobox gene(NOBOX), growth differentiation factor 9(GDF9), bone morphogenetic protein 15(BMP15), basic fibroblast growth factor(bFGF/FGF2), and leukemia inhibitory factor(LIF). These factors play either a positive or negative role in primordial follicle activation. Additionally, the article discusses various signaling pathways involved in regulating primordial follicle activation, including PI3K/AKT/FOXO3a, mTOR, Hippo, TGF-β, AMPK, Notch, cAMP, and Wnt signaling pathways. This review aims to provide a theoretical foundation and identify potential drug targets for the prevention and treatment of ovarian hypofunction diseases.

Key words: Ovarian hypofunction diseases, Primordial follicle activation, Inhibiting factors, Promoting factors, Signaling pathways

中图分类号: 

  • R711.75
[1] Sochocka M, Karska J, Pszczoowska M, et al. Cognitive decline in early and premature menopause[J]. Int J Mol Sci, 2023, 24(7): 6566. doi:10.3390/ijms24076566.
[2] Gosset A, Pouillès JM, Trémollieres F. Menopausal hormone therapy for the management of osteoporosis[J]. Best Pract Res Clin Endocrinol Metab, 2021, 35(6): 101551. doi:10.1016/j.beem.2021.101551.
[3] Vujovic S, Brincat M, Erel T, et al. EMAS position statement: managing women with premature ovarian failure[J]. Maturitas, 2010, 67(1): 91-93.
[4] De Vos M, Devroey P, Fauser BCJM. Primary ovarian insufficiency[J]. Lancet, 2010, 376(9744): 911-921.
[5] 柳晓亮, 刘一鸣, 苏原, 等. 卵巢早衰中西医病因病机及治疗研究进展[J]. 长春中医药大学学报, 2023, 39(7): 811-816. LIU Xiaoliang, LIU Yiming, SU Yuan, et al. Research progress in the etiology, pathogenesis and treatment of premature ovarian failure in traditional Chinese and western medicine [J]. Journal of Changchun University of Chinese Medicine, 2023, 39(7): 811-816.
[6] 王世宣, 张金金. 卵巢衰老的机制与预防研究进展[J]. 山东大学学报(医学版), 2019, 57(2): 16-22. WANG Shixuan, ZHANG Jinjin. Advances in the mechanisms research and preventive measures of ovarian aging [J]. Journal of Shandong University(Health Sciences), 2019, 57(2): 16-22.
[7] Vo KCT, Kawamura K. In vitro activation early follicles: from the basic science to the clinical perspectives[J]. Int J Mol Sci, 2021, 22(7): 3785. doi:10.3390/ijms22073785.
[8] 宋文广, 付浩, 郭敏, 等. 原发性卵巢功能不全患者原始卵泡体外激活技术[J]. 国际生殖健康/计划生育杂志, 2021, 40(6): 486-489. SONG Wenguang, FU Hao, GUO Min, et al. In vitro activation of primordial follicles in patients with primary ovarian insufficiency[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 486-489.
[9] Fasano C, Disciglio V, Bertora S, et al. FOXO3a from the nucleus to the mitochondria: a round trip in cellular stress response[J]. Cells, 2019, 8(9): 1110. doi:10.3390/cells8091110.
[10] Nagamatsu G, Shimamoto S, Hamazaki N, et al. Mechanical stress accompanied with nuclear rotation is involved in the dormant state of mouse oocytes[J]. Sci Adv, 2019, 5(6): eaav9960. doi:10.1126/sciadv.aav9960.
[11] Shimamoto S, Nishimura Y, Nagamatsu G, et al. Hypoxia induces the dormant state in oocytes through expression of Foxo3[J]. Proc Natl Acad Sci U S A, 2019, 116(25): 12321-12326.
[12] Ding LJ, Yan GJ, Wang B, et al. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility[J]. Sci China Life Sci, 2018, 61(12): 1554-1565.
[13] Wang Q, Zhao SX, He JN, et al. Repeated superovulation accelerates primordial follicle activation and atresia[J]. Cells, 2022, 12(1): 92. doi:10.3390/cells12010092.
[14] Kallen A, Polotsky AJ, Johnson J. Untapped reserves: controlling primordial follicle growth activation[J]. Trends Mol Med, 2018, 24(3): 319-331.
[15] Sonigo C, Beau I, Grynberg M, et al. AMH prevents primordial ovarian follicle loss and fertility alteration in cyclophosphamide-treated mice[J]. FASEB J, 2019, 33(1): 1278-1287.
[16] 刘源. FOXO3抑制转录因子SOHLH1对卵母细胞特异性表达基因Bmp15/Gdf9转录活性的研究[D]. 沈阳: 中国医科大学, 2019.
[17] Ford EA, Beckett EL, Roman SD, et al. Advances in human primordial follicle activation and premature ovarian insufficiency[J]. Reproduction, 2020, 159(1): R15-R29.
[18] Gong XH, Dai SY, Wang TT, et al. MiR-17-5p/FOXL2/CDKN1B signal programming in oocytes mediates transgenerational inheritance of diminished ovarian reserve in female offspring rats induced by prenatal dexamethasone exposure[J]. Cell Biol Toxicol, 2023, 39(3): 867-883.
[19] Ernst EH, Franks S, Hardy K, et al. Granulosa cells from human primordial and primary follicles show differential global gene expression profiles[J]. Hum Reprod, 2018, 33(4): 666-679.
[20] Zhang SW, Huang BX, Su P, et al. Concentrated exosomes from menstrual blood-derived stromal cells improves ovarian activity in a rat model of premature ovarian insufficiency[J]. Stem Cell Res Ther, 2021, 12(1): 178. doi:10.1186/s13287-021-02255-3.
[21] Haddad YH, Said RS, Kamel R, et al. Phytoestrogen genistein hinders ovarian oxidative damage and apoptotic cell death-induced by ionizing radiation: co-operative role of ER-β, TGF-β, and FOXL-2[J]. Sci Rep, 2020, 10(1): 13551. doi:10.1038/s41598-020-70309-2.
[22] Kleppe L, Edvardsen RB, Furmanek T, et al. bmp15l, figla, smc1bl, and larp6l are preferentially expressed in germ cells in Atlantic salmon(Salmo salar L.)[J]. Mol Reprod Dev, 2017, 84(1): 76-87.
[23] Fukuda K, Muraoka M, Kato Y, et al. Decoding the transcriptome of pre-granulosa cells during the formation of primordial follicles in the mouse[J]. Biol Reprod, 2021, 105(1): 179-191.
[24] Wang ZP, Liu CY, Zhao YG, et al. FIGLA, LHX8 and SOHLH1 transcription factor networks regulate mouse oocyte growth and differentiation[J]. Nucleic Acids Res, 2020, 48(7): 3525-3541.
[25] Kitanaka J, Takemura M, Matsumoto K, et al. Structure and chromosomal localization of a murine LIM/homeobox gene, Lhx8[J]. Genomics, 1998, 49(2): 307-309.
[26] Pangas SA, Choi Y, Ballow DJ, et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8[J]. Proc Natl Acad Sci U S A, 2006, 103(21): 8090-8095.
[27] DIgnazio L, Michel M, Beyer M, et al. Lhx8 ablation leads to massive autophagy of mouse oocytes associated with DNA damage[J]. Biol Reprod, 2018, 98(4): 532-542.
[28] Shimizu M, Shibuya H. WNK1/HSN2 mediates neurite outgrowth and differentiation via a OSR1/GSK3β-LHX8 pathway[J]. Sci Rep, 2022, 12(1): 15858. doi:10.1038/s41598-022-20271-y.
[29] Zhao L, Li Q, Kuang YP, et al. Heterozygous loss-of-function variants in LHX8 cause female infertility characterized by oocyte maturation arrest[J]. Genet Med, 2022, 24(11): 2274-2284.
[30] Zhang XL, Liu RH, Su ZX, et al. Immunohistochemical study of expression of Sohlh1 and Sohlh2 in normal adult human tissues[J]. PLoS One, 2015, 10(9): e0137431. doi:10.1371/journal.pone.0137431.
[31] Salomon AK, Leon K, Campbell MM, et al. Folliculogenic factors in photoregressed ovaries: differences in mRNA expression in early compared to late follicle development[J]. Gen Comp Endocrinol, 2018, 260: 90-99. doi:10.1016/j.ygcen.2018.01.003.
[32] Liu L, Liu BT, Wang L, et al. Sohlh1 and Lhx8 are prominent biomarkers to estimate the primordial follicle pool in mice[J]. Reprod Biol Endocrinol, 2023, 21(1): 46. doi:10.1186/s12958-023-01097-3.
[33] Shin YH, Ren Y, Suzuki H, et al. Transcription factors SOHLH1 and SOHLH2 coordinate oocyte differentiation without affecting meiosis I[J]. J Clin Invest, 2017, 127(6): 2106-2117.
[34] Liu GQ, Li Y, Du B, et al. Primordial follicle activation is affected by the absence of Sohlh1 in mice[J]. Mol Reprod Dev, 2019, 86(1): 20-31.
[35] Liu L, Liu BT, Li K, et al. Identification of biomarkers for predicting ovarian reserve of primordial follicle via transcriptomic analysis[J]. Front Genet, 2022, 13: 879974. doi:10.3389/fgene.2022.879974.
[36] Rajareddy S, Reddy P, Du C, et al. p27kip1(cyclin-dependent kinase inhibitor 1B)controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice[J]. Mol Endocrinol, 2007, 21(9): 2189-2202.
[37] Zhao J, Xu JY, Wang WS, et al. Long non-coding RNA LINC-01572: 28 inhibits granulosa cell growth via a decrease in p27(Kip1)degradation in patients with polycystic ovary syndrome[J]. EBioMedicine, 2018, 36: 526-538. doi:10.1016/j.ebiom.2018.09.043.
[38] Celik S, Celikkan FT, Ozkavukcu S, et al. Expression of inhibitor proteins that control primordial follicle reserve decreases in cryopreserved ovaries after autotransplantation[J]. J Assist Reprod Genet, 2018, 35(4): 615-626.
[39] Thanatsis N, Kaponis A, Koika V, et al. Reduced Foxo3a, FoxL2, and p27 mRNA expression in human ovarian tissue in premature ovarian insufficiency[J]. Hormones, 2019, 18(4): 409-415.
[40] Ma XC, Zhang W, Song JY, et al. Lifelong exposure to pyrethroid insecticide cypermethrin at environmentally relevant doses causes primary ovarian insufficiency in female mice[J]. Environ Pollut, 2022, 298: 118839. doi:10.1016/j.envpol.2022.118839.
[41] Jang H, Na Y, Hong K, et al. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27Kip1 promoter in primordial follicles[J]. J Pineal Res, 2017, 63(3). doi:10.1111/jpi.12432.
[42] Rajkovic A, Pangas SA, Ballow D, et al. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression[J]. Science, 2004, 305(5687): 1157-1159.
[43] Lechowska A, Bilinski S, Choi Y, et al. Premature ovarian failure in nobox-deficient mice is caused by defects in somatic cell invasion and germ cell cyst breakdown[J]. J Assist Reprod Genet, 2011, 28(7): 583-589.
[44] Rodriguez A, Briley SM, Patton BK, et al. Loss of the E2 SUMO-conjugating enzyme Ube2i in oocytes during ovarian folliculogenesis causes infertility in mice[J]. Development, 2019, 146(23): dev176701. doi:10.1242/dev.176701.
[45] Li L, Wang BB, Zhang W, et al. A homozygous NOBOX truncating variant causes defective transcriptional activation and leads to primary ovarian insufficiency[J]. Hum Reprod, 2017, 32(1): 248-255.
[46] Sassi A, Désir J, Duerinckx S, et al. Compound heterozygous null mutations of NOBOX in sisters with delayed puberty and primary amenorrhea[J]. Mol Genet Genomic Med, 2021, 9(10): e1776. doi:10.1002/mgg3.1776.
[47] 张雪. 小鼠生殖细胞特异性转录因子NOBOX调控初级卵泡发育机制的研究[D]. 沈阳: 中国医科大学, 2021.
[48] Yan H, Wen J, Zhang T, et al. Oocyte-derived E-cadherin acts as a multiple functional factor maintaining the primordial follicle pool in mice[J]. Cell Death Dis, 2019, 10(3): 160. doi:10.1038/s41419-018-1208-3.
[49] Yan TM, Zhang SP, Cai YP, et al. Estradiol upregulates the expression of the TGF-β receptors ALK5 and BMPR2 during the gonadal development of Schizothorax prenanti[J]. Animals, 2021, 11(5): 1365. doi:10.3390/ani11051365.
[50] Bernabé BP, Woodruff T, Broadbelt LJ, et al. Ligands, receptors, and transcription factors that mediate inter-cellular and intra-cellular communication during ovarian follicle development[J]. Reprod Sci, 2020, 27(2): 690-703.
[51] Dranow DB, Hu K, Bird AM, et al. Bmp15 is an oocyte-produced signal required for maintenance of the adult female sexual phenotype in zebrafish[J]. PLoS Genet, 2016, 12(9): e1006323. doi:10.1371/journal.pgen.1006323.
[52] Karagül Mⅰ, Akta?瘙塂 S, Co?瘙塂kun Yılmaz B, et al. GDF9 and BMP15 expressions and fine structure changes during folliculogenesis in polycystic ovary syndrome[J]. Balkan Med J, 2018, 35(1): 43-54.
[53] Chen PR, Uh K, Monarch K, et al. Inactivation of growth differentiation factor 9 blocks folliculogenesis in pigs[J]. Biol Reprod, 2023, 108(4): 611-618.
[54] Grosbois J, Demeestere I. Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation[J]. Hum Reprod, 2018, 33(9): 1705-1714.
[55] Monte APO, Bezerra MéS, Menezes VG, et al. Involvement of phosphorylated Akt and FOXO3a in the effects of growth and differentiation factor-9(GDF-9)on inhibition of follicular apoptosis and induction of granulosa cell proliferation after in vitro culture of sheep ovarian tissue[J]. Reprod Sci, 2021, 28(8): 2174-2185.
[56] Celik S, Ozkavukcu S, Celik-Ozenci C. Altered expression of activator proteins that control follicle reserve after ovarian tissue cryopreservation/transplantation and primordial follicle loss prevention by rapamycin[J]. J Assist Reprod Genet, 2020, 37(9): 2119-2136.
[57] Dalman A, Adib S, Amorim CA, et al. Co-culture of human cryopreserved fragmented ovarian tissue with theca progenitor cells derived from theca stem cells[J]. J Assist Reprod Genet, 2023, 40(7): 1611-1622.
[58] Celik S, Ozkavukcu S, Celik-Ozenci C. Recombinant anti-Mullerian hormone treatment attenuates primordial follicle loss after ovarian cryopreservation and transplantation[J]. J Assist Reprod Genet, 2023, 40(5): 1117-1134.
[59] Bayne RA, Kinnell HL, Coutts SM, et al. GDF9 is transiently expressed in oocytes before follicle formation in the human fetal ovary and is regulated by a novel NOBOX transcript[J]. PLoS One, 2015, 10(3): e0119819. doi:10.1371/journal.pone.0119819.
[60] Jiao YF, Jiang TT, Lin QY, et al. Molecular characterization of the follicular development of BMP15-edited pigs[J]. Reproduction, 2023, 166(4): 247-261.
[61] 赵安, 郭长权, 周烁, 等. 骨形态发生蛋白15(BMP15)通过Smads信号通路促进雏鸡原始卵泡的激活[J]. 中国兽医学报, 2022, 42(10): 2099-2108. ZHAO An, GUO Changquan, ZHOU Shuo, et al. Promoting effect of BMP15 on activation of chicken primordial follicles through Smads signaling pathway[J]. Chinese Journal of Veterinary Science, 2022, 42(10): 2099-2108.
[62] Fukami M. Ovarian dysfunction in women with Turner syndrome[J]. Front Endocrinol, 2023, 14: 1160258. doi:10.3389/fendo.2023.1160258.
[63] Rossetti R, Ferrari I, Bestetti I, et al. Fundamental role of BMP15 in human ovarian folliculogenesis revealed by null and missense mutations associated with primary ovarian insufficiency[J]. Hum Mutat, 2020, 41(5): 983-997.
[64] 王慧源, 浦丹华, 吴洁. 早发性卵巢功能不全与TGF-β超家族基因突变关系探讨[J]. 中国计划生育学杂志, 2018, 26(8): 754-758. WANG Huiyuan, PU Danhua, WU Jie. Relationship between POI and genetic mutations of TGF-β superfamily[J]. Chinese Journal of Family Planning, 2018, 26(8): 754-758.
[65] Taheri MM, Saki G, Nikbakht R, et al. Bone morphogenetic protein 15 induces differentiation of mesenchymal stem cells derived from human follicular fluid to oocyte-like cell[J]. Cell Biol Int, 2021, 45(1): 127-139.
[66] Gomes HAN, Campos LB, Praxedes éCG, et al. BMP-15 activity on in vitro development of collared peccary(Pecari tajacu Linnaeus, 1758)preantral follicles[J]. Zuchthygiene, 2020, 55(8): 958-964.
[67] Alborzi P, Jafari Atrabi M, Akbarinejad V, et al. Incorporation of arginine, glutamine or leucine in culture medium accelerates in vitro activation of primordial follicles in 1-day-old mouse ovary[J]. Zygote, 2020: 1-8. doi:10.1017/S096719942000026X.
[68] Sanfins A, Rodrigues P, Albertini DF. GDF-9 and BMP-15 direct the follicle symphony[J]. J Assist Reprod Genet, 2018, 35(10): 1741-1750.
[69] Mottershead DG, Sugimura S, Al-Musawi SL, et al. Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-β family, is a potent activator of granulosa cells and improves oocyte quality[J]. J Biol Chem, 2015, 290(39): 24007-24020.
[70] Shooshtar MJP, Ramezani M, Andoohjerdi RB. Effect of Lactobacillus plantarum on folliculogenesis in deep frying oil-fed rats[J]. Reprod Toxicol, 2023, 115: 157-162. doi:10.1016/j.reprotox.2022.12.009.
[71] Tang XK, Li HJ, Wang YL, et al. Chronic fluoride exposure induces ovarian dysfunction and potential association with premature ovarian failure in female rats[J]. Biol Trace Elem Res, 2024, 202(7): 3225-3236.
[72] Zhang XL, Ji MM, Tan XM, et al. Impairment of ovaries by 2, 3, 7, 8-tetrachlorobenzo-p-dioxin(TCDD)exposure in utero associated with BMP15 and GDF9 in the female offspring rat[J]. Toxicology, 2018, 410: 16-25. doi:10.1016/j.tox.2018.08.015.
[73] Lee HJ, Park MJ, Joo BS, et al. Effects of coenzyme Q10 on ovarian surface epithelium-derived ovarian stem cells and ovarian function in a 4-vinylcyclohexene diepoxide-induced murine model of ovarian failure[J]. Reprod Biol Endocrinol, 2021, 19(1): 59. doi:10.1186/s12958-021-00736-x.
[74] Park MJ, Han SE, Kim HJ, et al. Paeonia lactiflora improves ovarian function and oocyte quality in aged female mice[J]. Anim Reprod, 2020, 17(2): e20200013. doi:10.1590/1984-3143-AR2020-0013.
[75] Jeon MJ, Choi YS, Yoo JJ, et al. Optimized culture system to maximize ovarian cell growth and functionality in vitro[J]. Cell Tissue Res, 2021, 385(1): 161-171.
[76] Müller MC, Monte APO, Lins TLBG, et al. Fibroblast growth factor-2 promotes in vitro activation of cat primordial follicles[J]. Zygote, 2022, 30(5): 730-734.
[77] Guo CQ, Dong J, Ma YF, et al. LIF and bFGF enhanced chicken primordial follicle activation by Wnt/β-catenin pathway[J]. Theriogenology, 2021, 176: 1-11. doi:10.1016/j.theriogenology.2021.09.008.
[78] Guo CQ, Zhang GL, Lin X, et al. Reciprocal stimulating effects of bFGF and FSH on chicken primordial follicle activation through AKT and ERK pathway[J]. Theriogenology, 2019, 132: 27-35. doi:10.1016/j.theriogenology.2019.04.005.
[79] Ghezelayagh Z, Abtahi NS, Rezazadeh Valojerdi M, et al. The combination of basic fibroblast growth factor and kit ligand promotes the proliferation, activity and steroidogenesis of granulosa cells during human ovarian cortical culture[J]. Cryobiology, 2020, 96: 30-36. doi:10.1016/j.cryobiol.2020.08.011.
[80] Motozawa K, Motoyoshi M, Saiki A, et al. Functional comparison of high and low molecular weight basic fibroblast growth factors[J]. J Cell Biochem, 2018, 119(9): 7818-7826.
[81] Cadoret V, Jarrier-Gaillard P, Papillier P, et al. Leukaemia inhibitory factor modulates the differentiation of granulosa cells during sheep in vitro preantral to antral follicle development and improves oocyte meiotic competence[J]. Mol Hum Reprod, 2021, 27(9): gaab051. doi:10.1093/molehr/gaab051.
[82] Dong J, Guo CQ, Zhou S, et al. Leukemia inhibitory factor prevents chicken follicular atresia through PI3K/AKT and Stat3 signaling pathways[J]. Mol Cell Endocrinol, 2022, 543: 111550. doi:10.1016/j.mce.2021.111550.
[83] Leghari IH, Zhao D, Mi YL, et al. Isolation and culture of chicken primordial follicles[J]. Poult Sci, 2015, 94(10): 2576-2580.
[84] 郭长权. 细胞因子bFGF和LIF对雏鸡原始卵泡发育的调节作用及其机理的研究[D]. 杭州: 浙江大学, 2020.
[85] Mohammadzadeh F, Ajdary M, Mohammadzadeh A, et al. Leukemia inhibitory factors effect on the growth and survival of sheeps follicles of ovarian tissue during vitrification[J]. Cell Tissue Bank, 2023, 24(1): 109-123.
[86] Liu PH, Zhang XR, Hu JM, et al. Dysregulated cytokine profile associated with biochemical premature ovarian insufficiency[J]. Am J Reprod Immunol, 2020, 84(4): e13292. doi:10.1111/aji.13292.
[87] Mirza-Aghazadeh-Attari M, Ekrami EM, Aghdas SAM, et al. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: implication for cancer therapy[J]. Life Sci, 2020, 255: 117481. doi:10.1016/j.lfs.2020.117481.
[88] Masciangelo R, Hossay C, Donnez J, et al. Does the Akt pathway play a role in follicle activation after grafting of human ovarian tissue?[J]. Reprod Biomed Online, 2019, 39(2): 196-198.
[89] Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/akt signalling and DNA damage in the oocyte: implications for primordial follicle activation, oocyte quality and ageing[J]. Cells, 2020, 9(1): 200. doi:10.3390/cells9010200.
[90] Masciangelo R, Hossay C, Chiti MC, et al. Role of the PI3K and Hippo pathways in follicle activation after grafting of human ovarian tissue[J]. J Assist Reprod Genet, 2020, 37(1): 101-108.
[91] Terren C, Munaut C. Molecular basis associated with the control of primordial follicle activation during transplantation of cryopreserved ovarian tissue[J]. Reprod Sci, 2021, 28(5): 1257-1266.
[92] Albamonte MI, Calabró LY, Albamonte MS, et al. FOXO3 and PTEN expression in the ovary of girls with extra-gonadal cancer with or without chemotherapy treatment prior to cryopreservation[J]. BMC Womens Health, 2023, 23(1): 509. doi:10.1186/s12905-023-02648-x.
[93] Hsueh AJ, Kawamura K, Cheng Y, et al. Intraovarian control of early folliculogenesis[J]. Endocr Rev, 2015, 36(1): 1-24.
[94] Adib S, Valojerdi MR, Alikhani M. Dose optimisation of PTEN inhibitor, bpV(HOpic), and SCF for the in-vitro activation of sheep primordial follicles[J]. Growth Factors, 2019, 37(3/4): 178-189.
[95] 洪雯丽, 黄瑶琪, 祝费隐, 等. PTEN调控大鼠原始卵泡启动和生长[J]. 基础医学与临床, 2019, 39(8): 1077-1084. HONG Wenli, HUANG Yaoqi, ZHU Feiyin, et al. PTEN regulates primordial follicular initation and growth in rats[J]. Basic & Clinical Medicine, 2019, 39(8): 1077-1084.
[96] Bezerra MéS, Barberino RS, Menezes VG, et al. Insulin-like growth factor-1(IGF-1)promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B(PI3K/AKT)signalling pathway[J]. Reprod Fertil Dev, 2018, 30(11): 1503-1513.
[97] Wang PY, Gong YJ, Li DH, et al. Effect of induced molting on ovarian function remodeling in laying hens[J]. Poult Sci, 2023, 102(8): 102820. doi:10.1016/j.psj.2023.102820.
[98] Raffel N, Klemm K, Dittrich R, et al. The effect of bpV(HOpic)on in vitro activation of primordial follicles in cultured swine ovarian cortical strips[J]. Zuchthygiene, 2019, 54(8): 1057-1063.
[99] Maidarti M, Clarkson YL, McLaughlin M, et al. Inhibition of PTEN activates bovine non-growing follicles in vitro but increases DNA damage and reduces DNA repair response[J]. Hum Reprod, 2019, 34(2): 297-307.
[100] Komatsu K, Masubuchi S. Increased supply from blood vessels promotes the activation of dormant primordial follicles in mouse ovaries[J]. J Reprod Dev, 2020, 66(2): 105-113.
[101] Yan H, Zhang JW, Wen J, et al. CDC42 controls the activation of primordial follicles by regulating PI3K signaling in mouse oocytes[J]. BMC Biol, 2018, 16(1): 73. doi:10.1186/s12915-018-0541-4.
[102] Yoon SY, Kim R, Jang H, et al. Peroxisome proliferator-activated receptor gamma modulator promotes neonatal mouse primordial follicle activation in vitro[J]. Int J Mol Sci, 2020, 21(9): 3120. doi:10.3390/ijms21093120.
[103] Chang HM, Wu HC, Sun ZG, et al. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications[J]. Hum Reprod Update, 2019, 25(2): 224-242.
[104] Barberino RS, Macedo TJS, Lins TLBG, et al. Immunolocalization of melatonin receptor type 1 in the sheep ovary and involvement of the PI3K/Akt/FOXO3a signaling pathway in the effects of melatonin on survival and in vitro activation of primordial follicles[J]. Mol Reprod Dev, 2022, 89(10): 485-497.
[105] Takeuchi A, Koga K, Satake E, et al. Endometriosis triggers excessive activation of primordial follicles via PI3K-PTEN-akt-Foxo3 pathway[J]. J Clin Endocrinol Metab, 2019, 104(11): 5547-5554.
[106] Jiao WL, Mi X, Yang YJ, et al. Mesenchymal stem cells combined with autocrosslinked hyaluronic acid improve mouse ovarian function by activating the PI3K-AKT pathway in a paracrine manner[J]. Stem Cell Res Ther, 2022, 13(1): 49. doi:10.1186/s13287-022-02724-3.
[107] Cacciottola L, Courtoy GE, Nguyen TYT, et al. Adipose tissue-derived stem cells protect the primordial follicle pool from both direct follicle death and abnormal activation after ovarian tissue transplantation[J]. J Assist Reprod Genet, 2021, 38(1): 151-161.
[108] 李江慧. 槲皮素通过调控PI3K/AKT/FOXO3a通路抑制环磷酰胺引起的始基卵泡损耗[D]. 上海: 上海交通大学, 2020.
[109] Li JH, Long H, Cong YY, et al. Quercetin prevents primordial follicle loss via suppression of PI3K/Akt/Foxo3a pathway activation in cyclophosphamide-treated mice[J]. Reprod Biol Endocrinol, 2021, 19(1): 63. doi:10.1186/s12958-021-00743-y.
[110] Lv Y, Cao RC, Liu HB, et al. Single-oocyte gene expression suggests that curcumin can protect the ovarian reserve by regulating the PTEN-AKT-FOXO3a pathway[J]. Int J Mol Sci, 2021, 22(12): 6570. doi:10.3390/ijms22126570.
[111] Kawamura K, Cheng Y, Suzuki N, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment[J]. Proc Natl Acad Sci U S A, 2013, 110(43): 17474-17479.
[112] Li J, Kawamura K, Cheng Y, et al. Activation of dormant ovarian follicles to generate mature eggs[J]. Proc Natl Acad Sci U S A, 2010, 107(22): 10280-10284.
[113] Kato Y, Saga Y. Antagonism between DDX6 and PI3K-AKT signaling is an oocyte-intrinsic mechanism controlling primordial follicle growth[J]. Biol Reprod, 2023, 109(1): 73-82.
[114] Chen YY, Xi YY, Li ML, et al. Maternal exposure to PM2.5 decreases ovarian reserve in neonatal offspring mice through activating PI3K/AKT/FoxO3a pathway and ROS-dependent NF-κB pathway[J]. Toxicology, 2022, 481: 153352. doi:10.1016/j.tox.2022.153352.
[115] Zeng JW, Sun Y, Li XQ, et al. 2, 5-Hexanedione influences primordial follicular development in cultured neonatal mouse ovaries by interfering with the PI3K signaling pathway via miR-214-3p[J]. Toxicol Appl Pharmacol, 2020, 409: 115335. doi:10.1016/j.taap.2020.115335.
[116] Guo J, Zhang T, Guo YS, et al. Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice[J]. Proc Natl Acad Sci U S A, 2018, 115(23): E5326-E5333.
[117] Li ML, Zhou S, Wu YL, et al. Prenatal exposure to propylparaben at human-relevant doses accelerates ovarian aging in adult mice[J]. Environ Pollut, 2021, 285: 117254. doi:10.1016/j.envpol.2021.117254.
[118] Watanabe R, Takano T, Sasaki S, et al. Retention of higher fertility depending on ovarian follicle reserve in cystine-glutamate transporter gene-deficient mice[J]. Histochem Cell Biol, 2022, 157(3): 347-357.
[119] Santos AGA, Pereira LAAC, Viana JHM, et al. The CC-chemokine receptor 2 is involved in the control of ovarian folliculogenesis and fertility lifespan in mice[J]. J Reprod Immunol, 2020, 141: 103174. doi:10.1016/j.jri.2020.103174.
[120] Zhang T, He MN, Zhao LH, et al. HDAC6 regulates primordial follicle activation through mTOR signaling pathway[J]. Cell Death Dis, 2021, 12(6): 559. doi:10.1038/s41419-021-03842-1.
[121] 李琰珉. 褪黑素调控PI3K/AKT/mTOR自噬通路治疗早发性卵巢功能不全的机制研究[D]. 济南: 山东大学, 2020.
[122] 朱静, 杨庆岭, 孙莹璞. mTOR与卵泡发育[J]. 国际生殖健康/计划生育杂志, 2019, 38(2): 150-153. ZHU Jing, YANG Qingling, SUN Yingpu. mTOR with the follicular development[J]. Journal of International Reproductive Health/Family Planning, 2019, 38(2): 150-153.
[123] Correia B, Sousa MI, Ramalho-Santos J. The mTOR pathway in reproduction: from gonadal function to developmental coordination[J]. Reproduction, 2020, 159(4): R173-R188.
[124] Guo ZX, Yu Q. Role of mTOR signaling in female reproduction[J]. Front Endocrinol, 2019, 10: 692. doi:10.3389/fendo.2019.00692.
[125] Lu XW, Guo S, Cheng Y, et al. Stimulation of ovarian follicle growth after AMPK inhibition[J]. Reproduction, 2017, 153(5): 683-694.
[126] Xia HX, Zhang RX, Guan HY, et al. Follicle loss and PTEN/PI3K/mTOR signaling pathway activated in LepR-mutated mice[J]. Gynecol Endocrinol, 2019, 35(1): 44-48.
[127] Zhao Y, Zhang Y, Li J, et al. MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling[J]. J Cell Physiol, 2018, 233(1): 226-237.
[128] Zhao PK, Song ZD, Wang Y, et al. The endothelial nitric oxide synthase/cyclic guanosine monophosphate/protein kinase G pathway activates primordial follicles[J]. Aging, 2020, 13(1): 1096-1119.
[129] Xie YQ, Li S, Zhou LY, et al. Rapamycin preserves the primordial follicle pool during cisplatin treatment in vitro and in vivo[J]. Mol Reprod Dev, 2020, 87(4): 442-453.
[130] Vallet N, Boissel N, Elefant E, et al. Can some anticancer treatments preserve the ovarian reserve?[J]. Oncologist, 2021, 26(6): 492-503.
[131] Li N, Liu LL. Mechanism of resveratrol in improving ovarian function in a rat model of premature ovarian insufficiency[J]. J Obstet Gynaecol Res, 2018, 44(8): 1431-1438.
[132] Zhang T, Du XH, Zhao LH, et al. SIRT1 facilitates primordial follicle recruitment independent of deacetylase activity through directly modulating Akt1 and mTOR transcription[J]. FASEB J, 2019, 33(12): 14703-14716.
[133] Long GY, Yang JY, Xu JJ, et al. SIRT1 knock-in mice preserve ovarian reserve resembling caloric restriction[J]. Gene, 2019, 686: 194-202. doi:10.1016/j.gene.2018.10.040.
[134] Tatone C, Di Emidio G, Barbonetti A, et al. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility[J]. Hum Reprod Update, 2018, 24(3): 267-289.
[135] Sun YC, Wang YY, Sun XF, et al. The role of autophagy during murine primordial follicle assembly[J]. Aging, 2018, 10(2): 197-211.
[136] 陈燕霞. 补肾促卵方调控PI3K和Nrf2信号通路保护卵巢储备功能低下的机制研究[D]. 北京: 中国中医科学院, 2020.
[137] Zhang H, Qin FF, Liu AL, et al. Kuntai capsule attenuates premature ovarian failure through the PI3K/AKT/mTOR pathway[J]. J Ethnopharmacol, 2019, 239: 111885. doi:10.1016/j.jep.2019.111885.
[138] Ma K, Chen YX, Fan XD, et al. Dingkun Pill replenishes diminished ovarian reserve through the PI3K/AKT/mTOR signaling pathway in TWP-induced mice[J]. J Ethnopharmacol, 2020, 262: 112993. doi:10.1016/j.jep.2020.112993.
[139] Zhang H, Qin FF, Liu AL, et al. Electro-acupuncture attenuates the mice premature ovarian failure via mediating PI3K/AKT/mTOR pathway[J]. Life Sci, 2019, 217: 169-175. doi:10.1016/j.lfs.2018.11.059.
[140] Maas K, Mirabal S, Penzias A, et al. Hippo signaling in the ovary and polycystic ovarian syndrome[J]. J Assist Reprod Genet, 2018, 35(10): 1763-1771.
[141] Díaz-García C, Herraiz S, Pamplona L, et al. Follicular activation in women previously diagnosed with poor ovarian response: a randomized, controlled trial[J]. Fertil Steril, 2022, 117(4): 747-755.
[142] Lv XM, He CB, Huang C, et al. Timely expression and activation of YAP1 in granulosa cells is essential for ovarian follicle development[J]. FASEB J, 2019, 33(9): 10049-10064.
[143] Gao JY, Song TF, Che DH, et al. Deficiency of Pdk1 contributes to primordial follicle activation via the upregulation of YAP expression and the pro-inflammatory response[J]. Int J Mol Med, 2020, 45(2): 647-657.
[144] Herta AC, Lolicato F, Smitz JEJ. In vitro follicle culture in the context of IVF[J]. Reproduction, 2018, 156(1): F59-F73.
[145] Hu LL, Su T, Luo RC, et al. Hippo pathway functions as a downstream effector of AKT signaling to regulate the activation of primordial follicles in mice[J]. J Cell Physiol, 2019, 234(2): 1578-1587.
[146] Hsueh AJW, Kawamura K. Hippo signaling disruption and ovarian follicle activation in infertile patients[J]. Fertil Steril, 2020, 114(3): 458-464.
[147] Shah JS, Sabouni R, Cayton Vaught KC, et al. Biomechanics and mechanical signaling in the ovary: a systematic review[J]. J Assist Reprod Genet, 2018, 35(7): 1135-1148.
[148] Kawashima I, Kawamura K. Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway[J]. Syst Biol Reprod Med, 2018, 64(1): 3-11.
[149] Wang MN, Dai ML, Wang D, et al. The regulatory networks of the Hippo signaling pathway in cancer development[J]. J Cancer, 2021, 12(20): 6216-6230.
[150] Zhang XR, Han T, Yan L, et al. Resumption of ovarian function after ovarian biopsy/scratch in patients with premature ovarian insufficiency[J]. Reprod Sci, 2019, 26(2): 207-213.
[151] Simpson JL, Ory SJ. Can pregnancies be achieved in premature ovarian insufficiency?[J]. Reprod Sci, 2019, 26(2): 157-158.
[152] Lunding SA, Pors SE, Kristensen SG, et al. Biopsying, fragmentation and autotransplantation of fresh ovarian cortical tissue in infertile women with diminished ovarian reserve[J]. Hum Reprod, 2019, 34(10): 1924-1936.
[153] 许冰心. 机械刺激在体小鼠早衰卵巢激活休眠卵泡的实验研究[D]. 沈阳: 中国医科大学, 2020.
[154] 孙晖. FHL2基因对小鼠卵泡发育及繁殖力的调控作用及机制研究[D]. 武汉: 华中农业大学, 2021.
[155] Barretta M, Cacciottola L, Hossay C, et al. Impact of human ovarian tissue manipulation on follicles: evidence of a potential first wave of follicle activation during fertility preservation procedures[J]. J Assist Reprod Genet, 2023, 40(12): 2769-2776.
[156] Xie L, Wu SN, Cao DD, et al. Huyang Yangkun formula protects against 4-Vinylcyclohexene diepoxide-induced premature ovarian insufficiency in rats via the Hippo-JAK2/STAT3 signaling pathway[J]. Biomedecine Pharmacother, 2019, 116: 109008. doi:10.1016/j.biopha.2019.109008.
[157] Ernst EH, Nielsen J, Ipsen MB, et al. Transcriptome analysis of long non-coding RNAs and genes encoding paraspeckle proteins during human ovarian follicle development[J]. Front Cell Dev Biol, 2018, 6: 78. doi:10.3389/fcell.2018.00078.
[158] Hardy K, Mora JM, Dunlop C, et al. Nuclear exclusion of SMAD2/3 in granulosa cells is associated with primordial follicle activation in the mouse ovary[J]. J Cell Sci, 2018, 131(17): jcs218123. doi:10.1242/jcs.218123.
[159] Granados-Aparici S, Hardy K, Franks S, et al. SMAD3 directly regulates cell cycle genes to maintain arrest in granulosa cells of mouse primordial follicles[J]. Sci Rep, 2019, 9(1): 6513. doi:10.1038/s41598-019-42878-4.
[160] Zhou S, Zhao D, Liu SQ, et al. TGF-β1 sustains germ cell cyst reservoir via restraining follicle formation in the chicken[J]. Cell Biol Int, 2020, 44(3): 861-872.
[161] Kim KH, Kim EY, Kim GJ, et al. Human placenta-derived mesenchymal stem cells stimulate ovarian function via miR-145 and bone morphogenetic protein signaling in a
[1] 秦金金,曹辰媛,邢杰杰,安燕,黄煜湘. 子痫前期相关Siglec-6核心基因的预测及生物信息学分析[J]. 山东大学学报 (医学版), 2024, 62(1): 31-37.
[2] 刘金波,刘凯文,向崇鑫,程雷. 西红花苷对椎间盘退变的保护作用[J]. 山东大学学报 (医学版), 2023, 61(9): 84-93.
[3] 张嘉颖,宿荣允,王英惠,王洪刚,柳刚. ACE2基因通过调控Nrf2/HO-1通路改善肾缺血再灌注损伤[J]. 山东大学学报 (医学版), 2023, 61(4): 1-9.
[4] 芦兴晨,强晔,刘昕宇,左丹,姜子晗,张玉超,刘元涛,马小莉. NR4A1对毒胡萝卜素诱导C2C12肌管细胞糖代谢功能障碍的影响[J]. 山东大学学报 (医学版), 2023, 61(11): 38-47.
[5] 邹品衡,陈添果,胡康,李伟才. 过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制[J]. 山东大学学报 (医学版), 2022, 60(9): 59-66.
[6] 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29.
[7] 相宇娇,刘强,刘璐,石艳. 原发免疫性血小板减少症树突状细胞异常免疫反应机制[J]. 山东大学学报 (医学版), 2022, 60(7): 89-97.
[8] 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7.
[9] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[10] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[11] 李娜,郭增丽,迟令懿,杨立卓,马志勇,付志婕. 甲醛对嗜酸性粒细胞EOL-1的急性损伤作用机制[J]. 山东大学学报 (医学版), 2022, 60(11): 54-62.
[12] 曾媛媛,杨东鹏,董柱,张本,曹一秋,王晓武. 川芎嗪对野百合碱诱导大鼠肺动脉高压的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(11): 63-69.
[13] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
[14] 王芳,陈华,商丽红,李茹月,李咏梅,杨玉娥,哈春芳. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(9): 148-154.
[15] 张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇. 骨化三醇对哮喘中TGF-β1所诱导上皮间充质转化的调控作用[J]. 山东大学学报 (医学版), 2021, 59(7): 10-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!