您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (5): 1-7.doi: 10.6040/j.issn.1671-7554.0.2021.0319

• 医学病毒的基础与临床研究进展专题 •    下一篇

流感疫苗保护效果的影响因素研究进展

舒跃龙*(),文思敏   

  1. 中山大学公共卫生学院(深圳), 广东 深圳 518107
  • 收稿日期:2021-03-24 出版日期:2021-05-10 发布日期:2021-06-01
  • 通讯作者: 舒跃龙 E-mail:shuylong@mail.sysu.edu.cn
  • 作者简介:舒跃龙,教授,博士研究生导师。现任中山大学公共卫生学院(深圳)院长,曾入选国家“万人计划”首批“科技创新领军人才”,是国家杰出青年科学基金和中国青年科技奖获得者,入选中央电视台联合中国工程院和中国科学院等7部委共同主办的“2014年度十大科技创新人物”。担任中华医学会医学病毒学分会第十届委员会主任委员、《病毒学报》总编辑、《Emerging Microbes & Infections》编委,自2016年起担任亚太流感控制联盟主席。长期聚焦流感防控研究,在新病毒发现、检测试剂研发以及感染致病机制研究等方面取得突出成就。以第一(共同第一)和通讯(共同通讯)作者在Science、Nature、NEJM、Lancet等学术期刊发表论文122篇。相关研究成果入选2013年度中国百篇最具影响国际学术论文和2013年度中国科学十大进展,《以防控人感染H7N9禽流感为代表的新发传染病防治体系重大创新和技术突破》获2017年国家科技进步特等奖。
  • 基金资助:
    国家自然科学基金(82041043)

Research progress on factors influencing the protective effects of influenza vaccines

Yuelong SHU*(),Simin WEN   

  1. School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
  • Received:2021-03-24 Online:2021-05-10 Published:2021-06-01
  • Contact: Yuelong SHU E-mail:shuylong@mail.sysu.edu.cn

摘要:

每年接种流感疫苗是预防流感的最佳方法,然而当前使用的流感疫苗对人群的保护作用并不理想,这主要是由流感病毒的变异造成的。此外,流感疫苗的保护效果还受到包括遗传因素在内的许多其他因素的影响,而充分识别这些相关因素则具有重要意义。本文从疫苗与流行毒株的匹配度、疫苗因素及宿主因素等方面概括了可能影响流感疫苗保护效果的因素,并提出未来新型流感疫苗的发展方向。

关键词: 流感疫苗, 保护效果, 疫苗因素, 宿主因素

Abstract:

Annual vaccination is the best prevention of influenza. However, the protective effects of influenza vaccines currently used are poor due to variation of influenza viruses. The protective effects can also be affected by other factors including the genetic factor, and it is important to fully identify these related factors. In this paper, we briefly summarized the factors that may influence the protective effects of influenza vaccines from the aspects of the matching degree of circulating strains and vaccine strains, vaccine factors and host factors, and proposed the development direction of new influenza vaccines in the future.

Key words: Influenza vaccine, Protective effect, Vaccine factors, Host factors

中图分类号: 

  • R186
1 Hswen Y , Brownstein JS , Liu J , et al. Use of a digital health application for in fluenza surveillance in china[J]. Am J Public Health, 2017, 107 (7): 1130- 1136.
doi: 10.2105/AJPH.2017.303767
2 CDC. Seasonal influenza vaccine effectiveness, 2004-2018 [EB/OL]. (2020-12-11)[2021-03-01]. https: //www.cdc.gov/flu/professionals/vaccination/effectiveness-studies.htm.
3 Wen S , Wu Z , Zhong S , et al. Factors influencing the immunogenicity of influenza vaccines[J]. Hum Vaccin Immunother, 2021, 1- 13.
doi: 10.1080/21645515.2021.1875761
4 Simonsen L , Viboud C , Taylor RJ . Effectiveness of influenza vaccination[J]. N Engl J Med, 2007, 357 (26): 2729- 2730.
5 Herrera GA , Iwane MK , Cortese M , et al. Influenza vaccine effectiveness among 50-64-year-old persons during a season of poor antigenic match between vaccine and circulating influenza virus strains: Colorado, United States, 2003-2004[J]. Vaccine, 2007, 25 (1): 154- 160.
doi: 10.1016/j.vaccine.2006.05.129
6 Morimoto N , Takeishi K . Change in the efficacy of influenza vaccination after repeated inoculation under antigenic mismatch: a systematic review and meta-analysis[J]. Vaccine, 2018, 36 (7): 949- 957.
doi: 10.1016/j.vaccine.2018.01.023
7 Darvishian M , Dijkstra F , van Doorn E , et al. Influenza vaccine effectiveness in the netherlands from 2003/2004 through 2013/2014: the importance of circulating influenza virus types and subtypes[J]. PLoS One, 2017, 12 (1): e0169528.
doi: 10.1371/joural.pone.0169525
8 Loubet P , Loulergue P , Galtier F , et al. Seasonal influenza vaccination of high-risk adults[J]. Expert Rev Vaccines, 2016, 15 (12): 1507- 1518.
doi: 10.1080/14760584.2016.1188696
9 Sano K , Ainai A , Suzuki T , et al. The road to a more effective influenza vaccine: Up to date studies and future prospects[J]. Vaccine, 2017, 35 (40): 5388- 5395.
doi: 10.1016/j.vaccine.2017.08.034
10 Heikkinen T , Heinonen S . Effectiveness and safety of influenza vaccination in children: European perspective[J]. Vaccine, 2011, 29 (43): 7529- 7534.
doi: 10.1016/j.vaccine.2011.08.011
11 Ambrose CS , Levin MJ , Belshe RB . The relative efficacy of trivalent live attenuated and inactivated influenza vaccines in children and adults[J]. Influenza Other Respir Viruses, 2011, 5 (2): 67- 75.
doi: 10.1111/j.1750-2659.2010.00183.x
12 Cox MM , Hollister JR . FluBlok, a next generation influenza vaccine manufactured in insect cells[J]. Biologicals, 2009, 37 (3): 182- 189.
doi: 10.1016/j.biologicals.2009.02.014
13 Jackson LA , Chen WH , Stapleton JT , et al. Immunogenicity and safety of varying dosages of a monovalent 2009 H1N1 influenza vaccine given with and without AS03 adjuvant system in healthy adults and older persons[J]. J Infect Dis, 2012, 206 (6): 811- 820.
doi: 10.1093/infdis/jis427
14 Vesikari T , Forsten A , Arora A , et al. Influenza vaccination in children primed with MF59-adjuvanted or non-adjuvanted seasonal influenza vaccine[J]. Hum Vaccin Immunother, 2015, 11 (8): 2102- 2112.
doi: 10.1080/21645515.2015.1044167
15 Clark TW , Pareek M , Hoschler K , et al. Trial of 2009 influenza A (H1N1) monovalent MF59-adjuvanted vaccine[J]. N Engl J Med, 2009, 361 (25): 2424- 2435.
doi: 10.1056/NEJMoa0907650
16 CDC. Adjuvanted flu vaccine[EB/OL]. (2021-01-25) [2021-03-01]. https: //www.cdc.gov/flu/prevent/adjuvant.htm.
17 Engler RJ , Nelson MR , Klote MM , et al. Half- vs full-dose trivalent inactivated influenza vaccine (2004-2005): age, dose, and sex effects on immune responses[J]. Arch Intern Med, 2008, 168 (22): 2405- 2414.
doi: 10.1001/archinternmed.2008.513
18 Amadori A , Zamarchi R , De Silvestro G , et al. Genetic control of the CD4/CD8 T-cell ratio in humans[J]. Nat Med, 1995, 1 (12): 1279- 1283.
doi: 10.1038/nm1295-1279
19 Huygen K , Palfliet K . Strain variation in interferon gamma production of BCG-sensitized mice challenged with PPD Ⅱ. Importance of one major autosomal locus and additional sexual influences[J]. Cell Immunol, 1984, 85 (1): 75- 81.
doi: 10.1016/0008-8749(84)90279-X
20 Furman D , Hejblum BP , Simon N , et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination[J]. Proc Natl Acad Sci U S A, 2014, 111 (2): 869- 874.
doi: 10.1073/pnas.1321060111
21 Hewagama A , Patel D , Yarlagadda S , et al. Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis[J]. Genes Immun, 2009, 10 (5): 509- 516.
doi: 10.1038/gene.2009.12
22 Lu FX , Abel K , Ma Z , et al. The strength of B cell immunity in female rhesus macaques is controlled by CD8+ T cells under the influence of ovarian steroid hormones[J]. Clin Exp Immunol, 2002, 128 (1): 10- 20.
doi: 10.1046/j.1365-2249.2002.01780.x
23 Egawa Y , Ohfuji S , Fukushima W , et al. Immunogenicity of influenza A(H1N1)pdm09 vaccine in patients with diabetes mellitus: with special reference to age, body mass index, and HbA1c[J]. Hum Vaccin Immunother, 2014, 10 (5): 1187- 1194.
doi: 10.4161/hv.28252
24 Zimmermann P , Curtis N . The influence of the intestinal microbiome on vaccine responses[J]. Vaccine, 2018, 36 (30): 4433- 4439.
doi: 10.1016/j.vaccine.2018.04.066
25 Mukherjee S , Huda S , Sinha Babu SP . Toll-like receptor polymorphism in host immune response to infectious diseases: A review[J]. Scand J Immunol, 2019, 90 (1): e12771.
doi: 10.1111/sji.12771
26 Didierlaurent A , Ferrero I , Otten LA , et al. Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response[J]. J Immunol, 2004, 172 (11): 6922- 6930.
doi: 10.4049/jimmunol.172.11.6922
27 Yang J , Yan H . TLR5: beyond the recognition of flagellin[J]. Cell Mol Immunol, 2017, 14 (12): 1017- 1019.
doi: 10.1038/cmi.2017.122
28 Oh JZ , Ravindran R , Chassaing B , et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination[J]. Immunity, 2014, 41 (3): 478- 492.
doi: 10.1016/j.immuni.2014.08.009
29 Hong SH , Byun YH , Nguyen CT , et al. Intranasal administration of a flagellin-adjuvanted inactivated influenza vaccine enhances mucosal immune responses to protect mice against lethal infection[J]. Vaccine, 2012, 30 (2): 466- 474.
doi: 10.1016/j.vaccine.2011.10.058
30 Kim JR , Holbrook BC , Hayward SL , et al. Inclusion of flagellin during vaccination against influenza enhances recall responses in nonhuman primate neonates[J]. J Virol, 2015, 89 (14): 7291- 7303.
doi: 10.1128/JVI.00549-15
31 Cui B , Liu X , Fang Y , et al. Flagellin as a vaccine adjuvant[J]. Expert Rev Vaccines, 2018, 17 (4): 335- 349.
doi: 10.1080/14760584.2018.1457443
32 Ciabattini A , Olivieri R , Lazzeri E , et al. Role of the microbiota in the modulation of vaccine immune responses[J]. Front Microbiol, 2019, 10, 1305.
doi: 10.3389/fmicb.2019.01305
33 Andrews SF , Kaur K , Pauli NT , et al. High preexisting serological antibody levels correlate with diversification of the influenza vaccine response[J]. J Virol, 2015, 89 (6): 3308- 3317.
doi: 10.1128/JVI.02871-14
34 Sasaki S , He XS , Holmes TH , et al. Influence of prior influenza vaccination on antibody and B-cell responses[J]. PLoS One, 2008, 3 (8): e2975.
doi: 10.1371/joural.pone.0002975
35 Khurana S , Hahn M , Coyle EM , et al. Repeat vaccination reduces antibody affinity maturation across different influenza vaccine platforms in humans[J]. Nat Commun, 2019, 10 (1): 3338.
doi: 10.1038/s41467-019-11296-5
36 钟舒怡, 文思敏, 李茂, 等. 免疫相关基因多态性与流感疫苗应答的关联[J]. 中国疫苗和免疫, 2019, 25 (6): 736- 742.
ZHONG Shuyi , WEN Simin , LI Mao , et al. Relationship between immune related single nucleotide polymorphisms and the immune response to influenza vaccine[J]. Chinese Vaccines and Immunization, 2019, 25 (6): 736- 742.
37 Spencer MJ , Cherry JD , Terasaki PI . HL-A antigens and antibody response after influenza a vaccination[J]. N Engl J Med, 1976, 294 (1): 13- 16.
doi: 10.1056/NEJM197601012940104
38 Moss AJ , Gaughran FP , Karasu A , et al. Correlation between human leukocyte antigen class Ⅱ alleles and HAI titers detected post-influenza vaccination[J]. PLoS One, 2013, 8 (8): e71376.
doi: 10.1371/joural.pone.0071376
39 Gelder CM , Lambkin R , Hart KW , et al. Associations between human leukocyte antigens and nonresponsiveness to influenza vaccine[J]. J Infect Dis, 2002, 185 (1): 114- 117.
doi: 10.1086/338014
40 Poland GA , Ovsyannikova IG , Jacobson RM . Immunogenetics of seasonal influenza vaccine response[J]. Vaccine, 2008, 26 (Suppl4): 35- 40.
41 Narwaney KJ , Glanz JM , Norris JM , et al. Association of HLA class Ⅱ genes with clinical hyporesponsiveness to trivalent inactivated influenza vaccine in children[J]. Vaccine, 2013, 31 (7): 1123- 1128.
doi: 10.1016/j.vaccine.2012.12.026
42 Egli A , Santer DM , OShea D , et al. IL-28B is a key regulator of B-and T-cell vaccine responses against influenza[J]. PLoS Pathog, 2014, 10 (12): e1004556.
doi: 10.1371/journal.ppat.1004556
43 Lei N , Li Y , Sun Q , et al. IFITM3 affects the level of antibody response after influenza vaccination[J]. Emerg Microbes Infect, 2020, 9 (1): 976- 987.
doi: 10.1080/22221751.2020.1756696
44 Qin L , Wang D , Li D , et al. High level antibody response to pandemic influenza H1N1/09 virus is associated with interferon-induced transmembrane protein-3 rs12252-CC in young adults[J]. Front Cell Infect Microbiol, 2018, 8, 134.
doi: 10.3389/fcimb.2018.00134
45 Cummins NW , Weaver EA , May SM , et al. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice[J]. FASEB J, 2012, 26 (7): 2911- 2918.
doi: 10.1096/fj.11-190017
46 国家免疫规划技术工作组流感疫苗工作组. 中国流感疫苗预防接种技术指南(2020-2021)[J]. 中华流行病学杂志, 2020, 41 (10): 1555- 1576.
doi: 10.3760/cma.j.cn112338-20200904-01126
Influenza Vaccine Working Group of Technical Working Group on National Immunization Programme . Technical guidelines for influenza vaccination in China (2020-2021)[J]. Chinese Journal of Epidemiology, 2020, 41 (10): 1555- 1576.
doi: 10.3760/cma.j.cn112338-20200904-01126
47 Wang R , Song A , Levin J , et al. Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein[J]. Antiviral Res, 2008, 80 (2): 168- 177.
doi: 10.1016/j.antiviral.2008.06.002
48 刘雪洁, 赵天旖, 袁丽芳, 等. 通用型流感疫苗的研究现状与展望[J]. 病毒学报, 2021, 37 (2): 471- 482.
LIU Xuejie , ZHAO Tianyi , YUAN Lifang , et al. Research status and prospect of universal influenza vaccine[J]. Chinese Journal of Virology, 2021, 37 (2): 471- 482.
[1] 吕静静1,2,颜丙玉2,陈士玉3,徐爱强2,刘甲野2,冯艺2,龚晓红4,崔富强4,梁晓峰4,张丽2,王健1. 成人乙型肝炎疫苗初免低应答后加强免疫及影响因素分析[J]. 山东大学学报(医学版), 2012, 50(11): 126-.
[2] 僧明华,蒋红丽,封秀红,郭永豪,张肖肖,郭万申,范军星. 河南省18岁以下人群甲型H1N1流感抗体水平调查分析[J]. 山东大学学报(医学版), 2011, 49(6): 155-.
[3] 张桂琴,薛付忠,王洁贞,成玉,邵奇,徐桂春,李学刚 . 大规模人群接种Ⅱ型肾综合征出血热疫苗的远期流行病学效果研究[J]. 山东大学学报(医学版), 2007, 45(10): 981-984.
[4] 王凯. 病毒疫苗的研发现状及展望[J]. 山东大学学报 (医学版), 2021, 59(5): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[3] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[4] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[5] 罗昕,何兵,聂清生,侯震波,董军,李玉花,曾祥芹,刘伟,孔德民,曹金凤. 磁共振扩散加权成像单指数模型与扩散峰度成像模型在61例肾透明细胞癌分级中的对比[J]. 山东大学学报 (医学版), 2020, 1(7): 89 -95 .
[6] 张迪,于猛,刘霞. 神经调控技术简述[J]. 山东大学学报 (医学版), 2020, 1(8): 50 -60 .
[7] 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61 -66 .
[8] 陈安静,张训. 靶向小类泛素化修饰的胶质瘤治疗新策略[J]. 山东大学学报 (医学版), 2020, 1(8): 88 -94 .
[9] 张洪彬,赵寒辉,王素霞,周鹏,贺青卿,王延群,丁伟平,柳刚. 303例甲状旁腺切除术围术期观察及术后严重低钙血症危险因素分析[J]. 山东大学学报 (医学版), 2020, 1(9): 14 -20 .
[10] 孙薏丰,高玉,梁永媛,高杨. CPLX2在30例肝癌组织的表达及其对体外细胞增殖与侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 34 -39 .