[1] |
Vallon V, Thomson SC. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney[J]. Annu Rev Physiol, 2012, 74: 351-375. doi: 10.1146/annurev-physiol-020911-153333.
|
[2] |
Zhu YJ, Cui HW, Xia YF, et al. RIPK3-mediated necroptosis and apoptosis contributes to renal tubular cell progressive loss and chronic kidney disease progression in rats[J]. PLoS One, 2016, 6(11): e0156729.
|
[3] |
Roberto B, Valentina P, Damian G, et al. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration[J]. Int Rev Cell Mol Biol, 2013, 301: 215-290. doi: 10.1016/B978-0-12-407704-1.00005-1.
|
[4] |
Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta[J]. Nature, 2000, 6765(403): 98-103.
|
[5] |
Granja A, Pinheiro M, Reis S. Epigallocatechin gallate nanodelivery systems for cancer therapy[J]. Nutrients, 2016, 5(8). doi:10.3390/nu8050307.
|
[6] |
Garnet JL, Nicolas G, Hasna M, et al. Bcl-2-modifying factor induces renal proximal tubular cell apoptosis in diabetic mice[J]. Diabetes, 2012, 2(61): 474-484.
|
[7] |
吴蔚桦. 细胞程序性死亡与糖尿病肾病发病机制研究进展[J/CD].中华肾病研究, 2015, 4(4): 212-214. WU Weihua. Progress of research on the role of programmed cell death in the pathogenesis of diabetic nephropathy[J/CD]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2015, 4(4): 212-214.
|
[8] |
Moritz RJ, LeBaron RG, Phelix CF, et al. Macrophage TGF-β1 and the proapoptotic extracellular matrix protein BIGH3 induce renal cell apoptosis in prediabetic and diabetic conditions[J]. Int J Clin Med, 2016, 7(7): 496-510.
|
[9] |
王娜娜, 李雪峰, 王淑君, 等. 不同病理类型肾综患者尿蛋白对肾小管上皮细胞增殖和凋亡相关蛋白FAS表达的影响[J]. 中国中西医结合肾病杂志, 2013, 14(11): 955-958. WANG Nana, LI Xuefeng, WANG Shujun, et al. Effects of different quality proteinuria on proliferation and apoptosis in human renal tubular epithelial cells[J]. Chinese Journal of Integrated Traditional and Western Nephrology, 2013, 14(11): 955-958.
|
[10] |
Kelly DJ, Stein-Oakley A, Zhang Y, et al. Fas-induced apoptosis is a feature of progressive diabetic nephropathy in transgenic(mRen-2)27 rats: attenuation with renin-angiotensin blockade[J]. Nephrology(Carlton), 2004, 1(9): 7-13.
|
[11] |
Sun XY, Qin HJ, Zhang Z, et al. Valproate attenuates diabetic nephropathy through inhibition of endoplasmic reticulum stress-induced apoptosis[J]. Mol Med Rep, 2016, 13(1): 661-668.
|
[12] |
Fan Y, Xiao WZ, Li ZZ, et al. Erratum: RTN1 mediates progression of kidney disease by inducing ER stress[J]. Nat Commun, 2015, 6: 8710. doi:10.1038/ncomms9710.
|
[13] |
Fu XL, Gao DS. Endoplasmic reticulum proteins quality control and the unfolded protein response: the regulative mechanism of organisms against stress injuries[J]. Biofactors, 2014, 6(40): 569-585.
|
[14] |
Kong F, Han F, Xu Y, et al. Molecular mechanisms of IRE1α-ASK1 pathway reactions to unfolded protein response in DRN neurons of post-traumatic stress disorder rats[J]. J Mol Neurosci, 2017, 4(61): 531-541.
|
[15] |
McGuckin MA, Eri RD, Das I, et al. ER stress and the unfolded protein response in intestinal inflammation[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 6(298): 820-832.
|
[16] |
Xiong Y, Chen H, Lin P, et al. ATF6 knock-down decreases apoptosis, arrests the S phase of the cell cycle and increases steroid hormone production in mouse granulosa cells[J]. Am J Physiol Cell Physiol, 2017, 312(3): 341-353.
|
[17] |
Feng D, Wang B, Wang L, et al. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting ER stress-dependent autophagy via PERK and IRE1 signalings[J]. J Pineal Res, 2017, 62(3). doi: 10.1111/jpi.12395. Epub 2017 Mar 6.
|
[18] |
Wang G, Yang ZQ, Zhang K. Endoplasmic reticulum stress response in cancer: molecular mechanism and therapeutic potential[J]. Am J Transl Res, 2010, 1(2): 65-74.
|
[19] |
Cao YP, Hao YM, Li H, et al. Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose[J]. Int J Mol Med, 2014, 4(33): 809-816.
|
[20] |
Zhu W, Xu Jing, Ge YY, et al. Epigallocatechin-3-gallate(EGCG)protects skin cells from ionizing radiation via heme oxygenase-1(HO-1)overexpression[J]. J Radiat Res, 2014, 55(6): 1056-1065.
|
[21] |
Michelle AK, Huei LHN, Dino P, et al. Vascular and Metabolic Actions of the Green Tea Polyphenol Epigallocatechin Gallate[J]. Curr Med Chem, 2015, 22(1): 59-69.
|
[22] |
Seyedeh SS, Mehran SH, Ali S, et al. Epigallocatechin gallate/layered double hydroxide nanohybrids: preparation, characterization, and in vitro anti-tumor study[J]. PLoS One, 2015, 8(10): e0136530.
|
[23] |
Gao Z, Han Y, Hu Y, et al. Targeting HO-1 by epigallocatechin-3-gallate reduces contrast-induced renal injury via anti-oxidative stress and anti-inflammation pathways[J]. PLoS one, 2016, 2(11): e0149032.
|
[24] |
代春美, 宋玉泽, 杨伟, 等. EGCG 对高糖诱导的HK-2细胞氧化应激损伤的保护作用[J]. 天然产物研究与开发, 2016, 5(28): 673-679. DAI Chunmei, SONG Yuze, YANG Wei, et al. EGCG protects HK-2 cells damage induced by high glucose against oxidative stress[J]. Nat Prod Res Dev, 2016, 5(28): 673-679.
|
[25] |
Chen BB, Liu GY, Zou PM, et al. Epigallocatechin-3-gallate protects against cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis[J]. Exp Biol Med(Maywood), 2015, 11(240): 1513-1519.
|