Journal of Shandong University (Health Sciences) ›› 2021, Vol. 59 ›› Issue (1): 64-71.doi: 10.6040/j.issn.1671-7554.0.2020.1033
Previous Articles Next Articles
ZHEN Qiulai1,2, LYU Xinran3, YE Hui1, DING Xuchao3, CHAI Xiaoxue1, HU Xin1, ZHOU Ming1, CAO Lili1,3
CLC Number:
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA: A Cancer J Clin, 2018, 68(6): 394-424. [2] Banskota S, Dahal S, Kwon E, et al. Β-Catenin gene promoter hypermethylation by reactive oxygen species correlates with the migratory and invasive potentials of colon cancer cells [J]. Cell Oncol(Dordr), 2018, 41(5): 569-580. [3] Park SY, Wilkens LR, Setiawan VW, et al. Alcohol intake and colorectal cancer risk in the multiethnic cohort study [J]. Am J Epidemiol, 2019, 188(1): 67-76. [4] Vanella G, Archibugi L, Stigliano S, et al. Alcohol and gastrointestinal cancers [J]. Curr Opin Gastroenterol, 2019, 35(2): 107-113. [5] Fagunwa IO, Loughrey MB, Coleman HG. Alcohol, smoking and the risk of premalignant and malignant colorectal neoplasms [J]. Best Pract Res Clin Gastroenterol, 2017, 31(5): 561-568. [6] Zhang J, Guo S, Li J, et al. Effects of high-fat diet-induced adipokines and cytokines on colorectal cancer development [J]. FEBS Open Bio, 2019, 9(12): 2117-2125. [7] Triff K, McLean MW, Callaway E, et al. Dietary fat and fiber interact to uniquely modify global histone post-translational epigenetic programming in a rat colon cancer progression model [J]. Int J Cancer, 2018, 143(6): 1402-1415. [8] Nadella S, Burks J, Al-Sabban A, et al. Dietary fat stimulates pancreatic cancer growth and promotes fibrosis of the tumor microenvironment through the cholecystokinin receptor [J]. Am J Physiol - Gastrointest Liver Physiol, 2018, 315(5): G699-G712. [9] Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers [J]. J Mol Med, 2014, 92(8): 811-823. [10] Hong SN. Genetic and epigenetic alterations of colorectal cancer [J]. Intest Res, 2018, 16(3): 327. [11] Mc Donald RA, Hata A, MacLean MR, et al. Micro RNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling [J]. Cardiovasc Res, 2012, 93(4): 594-604. [12] Davis-Dusenbery BN, Wu C, Hata A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation [J]. Arterioscler Thromb Vasc Biol, 2011, 31(11): 2370-2377. [13] Xu G, Zhang M, Zhu H, et al. A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM [J]. Gene, 2017, 604: 33-40. doi: 10.1016/j.gene.2016.12.016. [14] Sun D, Chen J, Liu L, et al. Establishment of a 12-gene expression signature to predict colon cancer prognosis [J]. PeerJ, 2018, 6: e4942. doi:10.7717/peerj.4942. [15] Zuo SG, Dai GP, Ren XQ. Identification of a 6-gene signature predicting prognosis for colorectal cancer [J]. Cancer Cell Int, 2019, 19: 6. doi: 10.1186/s12935-018-0724-7. [16] Wang Z, Jensen MA, Zenklusen JC. A practical guide to the cancer genome atlas(TCGA)[J]. Methods Mol Biol, 2016, 1418: 111-141. doi: 10.1007/978-1-4939-3578-9_6. [17] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources [J]. Nat Protoc, 2009, 4(1): 44-57. [18] Wong MCS, Huang JJ, Lok V, et al. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location [J]. Clin Gastroenterol Hepatol, 2020(20): 30196-30198. doi: 10.1016/j.cgh.2020.02.026. [19] Araghi M, Soerjomataram I, Jenkins M, et al. Global trends in colorectal cancer mortality: projections to the year 2035 [J]. Int J Cancer, 2019, 144(12): 2992-3000. [20] Kim EK, Song MJ, Jung Y, et al. Proteomic analysis of primary colon cancer and synchronous solitary liver metastasis[J]. Cancer Genomics Proteomics, 2019, 16(6): 583-592. [21] Kumamoto K, Nakachi Y, Mizuno Y, et al. Expressions of 10 genes as candidate predictors of recurrence in stage III colon cancer patients receiving adjuvant oxaliplatinbased chemotherapy[J]. Oncol Lett, 2019, 18(2): 1388-1394. [22] Zhao ZW, Fan XX, Yang LL, et al. The identification of a common different gene expression signature in patients with colorectal cancer [J]. Math Biosci Eng, 2019, 16(4): 2942-2958. [23] Mo SB, Dai WX, Xiang WQ, et al. Prognostic and predictive value of an autophagy-related signature for early relapse in stages I-III colon cancer [J]. Carcinogenesis, 2019, 40(7): 861-870. [24] Wang XJ, Zeng B, Lin S, et al. An integrated miRNA-lncRNA signature predicts the survival of stage II colon cancer [J]. Ann Clin Lab Sci, 2019, 49(6): 730-739. [25] Yang H, Liu H, Lin HC, et al. Association of a novel seven-gene expression signature with the disease prognosis in colon cancer patients [J]. Aging(Albany NY), 2019, 11(19): 8710-8727. [26] Lauss M, Kriegner A, Vierlinger K, et al. Characterization of the drugged human genome [J]. Pharmacogenomics, 2007, 8(8): 1063-1073. [27] Nguyen TT, Ung TT, Kim NH, et al. Role of bile acids in colon carcinogenesis [J]. World J Clin Cases, 2018, 6(13): 577-588. [28] Yan L, Gong YZ, Shao MN, et al. Distinct diagnostic and prognostic values of γ-aminobutyric acid type A receptor family genes in patients with colon adenocarcinoma [J]. Oncol Lett, 2020, 20(1): 275-291. [29] Liu B, Pan SM, Xiao Y, et al. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway [J]. J Exp Clin Cancer Res, 2018, 37: 316. doi:10.1186/s13046-018-0994-x. [30] Jiang D, Jin M, Ye D, et al. Polymorphisms of a novel long non-coding RNA RP11-108K3.2 with colorectal cancer susceptibility and their effects on its expression [J]. Int J Biol Markers, 2020, 35(1): 3-9. [31] Zhou W, Pan B, Liu L. Integrated bioinformatics analysis revealing independent prognostic long non-coding RNAs DNAH17-AS1 and RP11-400N13.2 and their potential oncogenic roles in colorectal cancer [J]. Oncol Lett, 2019, 18(4): 3705-3715. |
[1] | ZHANG Zhenwei, LI Jia, CHEN Keming. IGF2BP2/m6A/ITGA5 signal axis regulates the proliferation and migration of renal clear cells [J]. Journal of Shandong University (Health Sciences), 2022, 60(9): 74-84. |
[2] | GAO Zhongxia, ZHANG Ming, FAN Mingde, TAN Chenyang, WANG Mengdi, WANG Chao, FAN Yuefei, DING Shouluan, WANG Chengwei. Efficacy and prognostic factors of gamma knife in treating 81 cases of brain metastases from lung cancer [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 44-49. |
[3] | GAO Huiru, DU Tiantian, WANG Yunshan, DU Lutao, WANG Chuanxin. Characterization of regulatory T cells in gastric cancer based on single-cell RNA sequencing data [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 43-49. |
[4] | QIN Chaoqun, HUANG Bin, YANG Fang, WANG Changming, XIAO Ying, HUANG Hancan, LI Liying, GAO Feng. GSK3β/eEF2K signaling involves in the induced differentiation of lung fibroblasts by regulating autophagy [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 8-15. |
[5] | ZHONG Lili, SHENG Ying, GUO Jianghong, YANG Shuangjian, HE Yijing. LncRNA-UCA1 effects invasion and metastasis of trophoblast cells by targeting miR-182-5p [J]. Journal of Shandong University (Health Sciences), 2022, 60(3): 76-82. |
[6] | GAO Huijiang, WEI Yucheng. Minimally invasive sleeve lobectomy: opportunities and challenges in the era of immunotherapy [J]. Journal of Shandong University (Health Sciences), 2022, 60(11): 23-27. |
[7] | FENG Xinxin, HAN Bo, ZHANG Li, MA Mengjie, CHEN Siyu. Long non-coding RNA NONHSAT247814.1 expression in 18 childhood with myocarditis and in vitro cellular experimental observation [J]. Journal of Shandong University (Health Sciences), 2022, 60(10): 27-32. |
[8] | LI Mingbo, HUANG Yanbo, REN Dongcheng, LIU Juncheng, TAN Chengshuang, XU Jixi, DING Jinyong. Afinite element analysis of three different fusion methods of lumbar internal fixation [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 55-64. |
[9] | Yanyan MA,Yaoqin GONG. Application of brain organoids in investigating neurodevelopmental diseases [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 22-29. |
[10] | Chong QIAO,Tingting WANG. Research progress of maternal-fetal immunomodulatory mechanism [J]. Journal of Shandong University (Health Sciences), 2021, 59(8): 24-31. |
[11] | SUN Qingjie, ZHANG Yisha, GUAN Shanghui, FENG Zhihui. Effects of valproic acid on the survival and tumor recurrence of 134 patients with glioma treated with radiotherapy [J]. Journal of Shandong University (Health Sciences), 2021, 59(8): 80-85. |
[12] | MAO Qian, WANG Zhe, GUAN Peixia, LIU Yujie, XIAO Yufei, YANG Yi, CONG Huiwen,WANG Lianyuan, SHI Fuyan, WANG Suzhen. Correlation analysis of dynamic changes of uric acid and incidence of gout in 1,144 cases [J]. Journal of Shandong University (Health Sciences), 2021, 59(8): 107-112. |
[13] | CHU Yan, LIU Duanrui, ZHU Wenshuai, FAN Rong, MA Xiaoli, WANG Yunshan, JIA Yanfei. Expressions of DNA methyltransferases in gastric cancer and their clinical significance [J]. Journal of Shandong University (Health Sciences), 2021, 59(7): 1-9. |
[14] | LI Wanwan, ZHOU Wenkai, DONG Shuqing, HE Shiqing, LIU Zhao, ZHANG Jiaxin, LIU Bin. Construct of a risk assessment model of breast cancer immune-related lncRNAs based on the database information [J]. Journal of Shandong University (Health Sciences), 2021, 59(7): 74-84. |
[15] | MI Qi, SHI Shuang, LI Juan, LI Peilong, DU Lutao, WANG Chuanxin. Construction of circRNA-mediated ceRNA network and prognostic assessment model for bladder cancer [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 94-102. |
|