Journal of Shandong University (Health Sciences) ›› 2021, Vol. 59 ›› Issue (8): 24-31.doi: 10.6040/j.issn.1671-7554.0.2021.0794
Previous Articles Next Articles
QIAO Chong, WANG Tingting
CLC Number:
[1] Beaman KD, Jaiswal MK, Katara GK, et al. Pregnancy is a model for tumors, not transplantation[J]. Am J Reprod Immunol, 2016, 76(1): 3-7. [2] Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy[J]. Nat Rev Immunol, 2017, 17(8): 469-482. [3] Schumacher A, Sharkey DJ, Robertson SA, et al. Immune cells at the fetomaternal Interface: how the microenvironment modulates immune cells to foster fetal development[J]. J Immunol, 2018, 201(2): 325-334. [4] Moffett A, Loke C. Immunology of placentation in eutherian mammals[J]. Nat Rev Immunol, 2006, 6(8): 584-594. [5] Ferreira LM, Meissner TB, Mikkelsen TS, et al. A distant trophoblast-specific enhancer controls HLA-G expression at the maternal-fetal interface[J]. Proc Natl Acad Sci U S A, 2016, 113(19): 5364-5369. [6] Gregori S, Amodio G, Quattrone F, et al. HLA-G orchestrates the early interaction of human trophoblasts with the maternal niche[J]. Front Immunol, 2015, 6: 128. doi:10.3389/fimmu.2015.00128. [7] Ferreira LMR, Meissner TB, Tilburgs T, et al. HLA-G: at the interface of maternal-fetal tolerance[J]. Trends Immunol, 2017, 38(4): 272-286. [8] Xu X, Zhou Y, Wei H. Roles of HLA-G in the maternal-fetal Immune microenvironment[J]. Front Immunol, 2020, 11: 592010. doi:10.3389/fimmu.2020.592010. [9] 陈绣瑛, 黄丽丽. 人类白细胞抗原-G与母胎免疫耐受的关系[J]. 中国计划生育杂志, 2021, 29(6): 1302-1305. CHEN Xiuying, HUANG Lili. Association human leukocyte antigen-G and maternal-ketal immunotolerance[J]. Chinese Journal of Family Planning, 2021, 29(6): 1302-1305. [10] Marcenaro E, Pesce S, Sivori S, et al. KIR2DS1-dependent acquisition of CCR7 and migratory properties by human NK cells interacting with allogeneic HLA-C2+ DCs or T-cell blasts[J]. Blood, 2013, 121(17): 3396-3401. [11] Tilburgs T, Crespo AC, van der Zwan A, et al. Human HLA-G+ extravillous trophoblasts: immune-activating cells that interact with decidual leukocytes[J]. Proc Natl Acad Sci U S A, 2015, 112(23): 7219-7224. [12] Papúchová H, Meissner TB, Li Q, et al. The dual role of HLA-C in tolerance and immunity at the maternal-fetal interface[J]. Front Immunol, 2019, 10: 2730. doi:10.3389/fimmu.2019.02730. [13] Bulmer JN, Williams PJ, Lash GE. Immune cells in the placental bed[J]. Int J Dev Biol, 2010, 54(2-3): 281-294. [14] Yang F, Zheng Q, Jin L. Dynamic function and composition changes of immune cells during normal and pathological pregnancy at the maternal-fetal interface[J]. Front Immunol, 2019, 10: 2317. doi:10.3389/fimmu.2019.02317. [15] Le Bouteiller P, Bensussan A. Up-and-down immunity of pregnancy in humans[J]. F1000Res, 2017, 6: 1216. doi:10.12688/f1000research.11690.1. [16] Carlino C, Stabile H, Morrone S, et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy[J]. Blood, 2008, 111(6): 3108-3115. [17] Vacca P, Vitale C, Montaldo E, et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells[J]. Proc Natl Acad Sci U S A, 2011, 108(6): 2402-2407. [18] Manaster I, Mizrahi S, Goldman-Wohl D, et al. Endometrial NK cells are special immature cells that await pregnancy[J]. J Immunol, 2008, 181(3): 1869-1876. [19] Ivarsson MA, Stiglund N, Marquardt N, et al. Composition and dynamics of the uterine NK cell KIR repertoire in menstrual blood[J]. Mucosal Immunol, 2017, 10(2): 322-331. [20] Williams PJ, Searle RF, Robson SC, et al. Decidual leucocyte populations in early to late gestation normal human pregnancy[J]. J Reprod Immunol, 2009, 82(1): 24-31. [21] 金妮, 芦洁, 王明, 等. 蜕膜自然杀伤细胞对孕早期母胎界面免疫微环境的影响[J]. 中国计划生育和妇产科, 2021, 13(7): 42-45. [22] Gaynor LM, Colucci F. Uterine natural killer cells: functional distinctions and influence on pregnancy in humans and mice[J]. Front Immunol, 2017, 8: 467. doi:10.3389/fimmu.2017.00467. [23] Hazan AD, Smith SD, Jones RL, et al. Vascular-leukocyte interactions: mechanisms of human decidual spiral artery remodeling in vitro[J]. Am J Pathol, 2010, 177(2): 1017-1030. [24] Hanna J, Goldman-Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface[J]. Nat Med, 2006, 12(9): 1065-1074. [25] Manaster I, Mandelboim O. The unique properties of human NK cells in the uterine mucosa[J]. Placenta, 2008, 29(Suppl A): 60-66. [26] Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early maternal-fetal interface in humans[J]. Nature, 2018, 563(7731): 347-353. [27] Fu B, Zhou Y, Ni X, et al. Natural killer cells promote fetal development through the secretion of growth-promoting factors[J]. Immunity, 2017, 47(6): 1100-1113. [28] Tilburgs T, Evans JH, Crespo AC, et al. The HLA-G cycle provides for both NK tolerance and immunity at the maternal-fetal interface[J]. Proc Natl Acad Sci U S A, 2015, 112(43): 13312-13317. [29] Li YH, Zhou WH, Tao Y, et al. The Galectin-9/Tim-3 pathway is involved in the regulation of NK cell function at the maternal-fetal interface in early pregnancy[J]. Cell Mol Immunol, 2016, 13(1): 73-81. [30] Dempsey LA. Tim-3 promotes maternal tolerance[J]. Nat Immunol, 2017, 18(11): 1189. [31] Liu S, Diao L, Huang C, et al. The role of decidual immune cells on human pregnancy[J]. J Reprod Immunol, 2017, 124: 44-53. doi:10.1016/j.jri.2017.10.045. [32] Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways[J]. Cell Signal, 2014, 26(2): 192-197. [33] Jiang X, Du MR, Li M, et al. Three macrophage subsets are identified in the uterus during early human pregnancy[J]. Cell Mol Immunol, 2018, 15(12): 1027-1037. [34] Ning F, Liu H, Lash GE. The role of decidual macrophages during normal and pathological pregnancy[J]. Am J Reprod Immunol, 2016, 75(3): 298-309. [35] Abrahams VM, Kim YM, Straszewski SL, et al. Macrophages and apoptotic cell clearance during pregnancy[J]. Am J Reprod Immunol, 2004, 51(4): 275-282. [36] Grozdics E, Berta L, Bajnok A, et al. B7 costimulation and intracellular indoleamine-2,3-dioxygenase(IDO)expression in peripheral blood of healthy pregnant and non-pregnant women[J]. BMC Pregnancy Childbirth, 2014, 14: 306. doi:10.1186/1471-2393-14-306. [37] Sayama S, Nagamatsu T, Schust DJ, et al. Human decidual macrophages suppress IFN-gamma production by T cells through costimulatory B7-H1: PD-1 signaling in early pregnancy[J]. J Reprod Immunol, 2013, 100(2): 109-117. [38] 蒋梦琪, 王雁. 协同共刺激分子B7-H4与母胎免疫[J]. 中国生育健康杂志, 2019, 30(4): 398-400. [39] Nancy P,Erlebacher A. T cell behavior at the maternal-fetal interface[J]. Int J Dev Biol, 2014, 58(2-4): 189-198. [40] Tsuda S, Nakashima A, Shima T, et al. New paradigm in the role of regulatory T cells during pregnancy[J]. Front Immunol, 2019, 10: 573. doi:10.3389/fimmu.2019.00573. [41] Wang SC, Li YH, Piao HL, et al. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy[J]. Cell Death Dis, 2015, 6: e1738. doi:10.1038/cddis.2015.112. [42] van Egmond A, van der Keur C, Swings GM, et al. The possible role of virus-specific CD8(+)memory T cells in decidual tissue[J]. J Reprod Immunol, 2016, 113: 1-8. doi:10.1016/j.jri.2015.09.073. [43] Zhu JF, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations(*)[J]. Annu Rev Immunol, 2010, 28: 445-489. doi:10.1146/annurev-immunol-030409-101212. [44] Powell RM, Lissauer D, Tamblyn J, et al. Decidual T Cells exhibit a highly differentiated phenotype and pemo- nstrate potential fetal specificity and a strong transcriptional response to IFN[J]. J Immunol, 2017, 199(10): 3406-3417. [45] Hirahara K, Nakayama T. CD4+T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm[J]. Int Immunol, 2016, 28(4): 163-171. [46] Wang WJ, Sung N, Gilman-Sachs A, et al. T helper(Th)cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells[J]. Front Immunol, 2020, 11: 2025. doi:10.3389/fimmu.2020.02025. [47] Taylor EB, Sasser JM. Natural killer cells and T lymphocytes in pregnancy and pre-eclampsia[J]. Clin Sci(Lond), 2017, 131(24): 2911-2917. [48] Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells[J]. Nat Rev Immunol, 2011, 11(2): 119-130. [49] Thornton AM, Korty PE, Tran DQ, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells[J]. J Immunol, 2010, 184(7): 3433-3441. [50] Inada K, Shima T, Ito M, et al. Helios-positive functional regulatory T cells are decreased in decidua of miscarriage cases with normal fetal chromosomal content[J]. J Reprod Immunol, 2015, 107: 10-19. doi:10.1016/j.jri.2014.09.053. [51] Chang RQ, Li DJ, Li MQ. The role of indoleamine-2,3-dioxygenase in normal and pathological pregnancies[J]. Am J Reprod Immunol, 2018, 79(4): e12786. [52] Miwa N, Hayakawa S, Miyazaki S, et al. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion[J]. Mol Hum Reprod, 2005, 11(12): 865-870. [53] Wang WJ, Liu FJ, Zhang X, et al. Periodic elevation of regulatory T cells on the day of embryo transfer is associated with better in vitro fertilization outcome[J]. J Reprod Immunol, 2017, 119: 49-53. doi:10.1016/j.jri.2017.01.002. [54] 孙兰, 康晓敏, 武泽. CD4+T细胞在孕早期母胎界面免疫耐受中的研究进展[J]. 中国免疫学杂志, 2021, 37(6): 754-763. SUN Lan, KANG Xiaomin, WU Ze. Research progress of CD4+T cells in maternal-fetal interface immune tolerance in early pregnancy[J]. Chinese Journal of Immunology, 2021, 37(6): 754-763. [55] 栾晓蕊, 李卫平. 滤泡性辅助T细胞亚型与原因不明复发性流产的关系研究[J]. 上海交通大学学报(医学版), 2017, 37(10): 1346-1349. LUAN Xiaorui, LI Weiping. Relationship between subtypes of T follicular helper cells and unexplained recurrent spontaneous abortion[J]. Journal of Shanghai Jiaotong University(Medical Science), 2017, 37(10): 1346-1349. [56] Gardner L, Moffett A. Dendritic cells in the human decidua[J]. Biol Reprod, 2003, 69(4): 1438-1446. [57] Wei R, Lai N, Zhao L, et al. Dendritic cells in pregnancy and pregnancy-associated diseases[J]. Biomed Pharmacother, 2021, 133: 110921. doi:10.1016/j.biopha.2020.110921. [58] Tagliani E, Erlebacher A. Dendritic cell function at the maternal-fetal interface[J]. Expert Rev Clin Immunol, 2011, 7(5): 593-602. doi:10.1586/eci.11.52. [59] Darmochwal-Kolarz DA, Kludka-Sternik M, Chmielewski T, et al. The expressions of CD200 and CD200R molecules on myeloid and lymphoid dendritic cells in pre-eclampsia and normal pregnancy[J]. Am J Reprod Immunol, 2012, 67(6): 474-481. [60] Rieger L, Honig A, Sutterlin M, et al. Antigen-presenting cells in human endometrium during the menstrual cycle compared to early pregnancy[J]. J Soc Gynecol Investig, 2004, 11(7): 488-493. [61] Kammerer U, Kruse A, Barrientos G, et al. Role of dendritic cells in the regulation of maternal immune responses to the fetus during mammalian gestation[J]. Immunol Invest, 2008, 37(5): 499-533. |
[1] | ZHONG Lili, SHENG Ying, GUO Jianghong, YANG Shuangjian, HE Yijing. LncRNA-UCA1 effects invasion and metastasis of trophoblast cells by targeting miR-182-5p [J]. Journal of Shandong University (Health Sciences), 2022, 60(3): 76-82. |
[2] | ZHAO Limei, YAN Lei, SHEN Xiaochang, SUN Yiqing, HE Pengjuan, ZHAO Xingbo. Effects of mifepristone and misoprostol on the expression of TRIM22 in trophoblast cells [J]. Journal of Shandong University (Health Sciences), 2019, 57(10): 86-92. |
[3] | JIA Xueqin1, LIU Haiying2, MA Yuyan2, GAO Lingxue3, LIU Yuan2. Effects of the hepatocyte growth factor on expression of the homeobox gene HLX1 and invasion of trophoblast cells [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(2): 58-. |
|