Journal of Shandong University (Health Sciences) ›› 2022, Vol. 60 ›› Issue (1): 55-64.doi: 10.6040/j.issn.1671-7554.0.2021.0609
Previous Articles Next Articles
LI Mingbo1, HUANG Yanbo1, REN Dongcheng2, LIU Juncheng1, TAN Chengshuang3, XU Jixi4, DING Jinyong4
CLC Number:
[1] Reid PC, Morr S, Kaiser MG. State of the union: a review of lumbar fusion indications and techniques for degenerative spine disease [J]. J Neurosurg Spine, 2019, 31(1): 1-14. [2] Zhao YC, Wang ZW, Zhu XD, et al. Prediction of postoperative trunk imbalance after posterior spinal fusion with pedicle screw fixation for adolescent idiopathic scoliosis [J]. J Pediatr Orthop Part B, 2011, 20(4): 199-208. [3] Bode KS, Newton PO. Pediatric nonaccidental trauma thoracolumbar fracture-dislocation: posterior spinal fusion with pedicle screw fixation in an 8-month-old boy [J]. Spine(Phila Pa 1976), 2007, 32(14): 388-393. [4] Li R, Li X, Zhou H, et al. Development and application of oblique lumbar interbody fusion [J]. Orthop Surg, 2020, 12(2): 355-365. [5] Hoffmann CH, Kandziora F. Minimal-invasive transforaminale lumbale interkorporelle Fusion [J]. Oper Orthopödie Und Traumatol, 2020, 32(3): 180-191. [6] Momin AA, Steinmetz MP. Evolution of minimally invasive lumbar spine surgery [J]. World Neurosurg, 2020, 140: 622-626. doi:10.1016/j.wneu.2020.05.071. [7] Mun HY, Ko MJ, Kim YB, et al. Usefulness of oblique lateral interbody fusion at L5-S1 level compared to transforaminal lumbar interbody fusion [J]. J Korean Neurosurg Soc, 2020, 63(6): 723-729. doi:10.3340/jkns.2018.0215. [8] Foley KT, Lefkowitz MA. Advances in minimally invasive spine surgery [J]. Clin Neurosurg, 2002, 49: 499-517. [9] Droeghaag R, Hermans SMM, Caelers IJMH, et al. Cost-effectiveness of open transforaminal lumbar interbody fusion(OTLIF)versus minimally invasive transforaminal lumbar interbody fusion(MITLIF): a systematic review and meta-analysis [J]. Spine J, 2021, 21(6): 945-954. [10] Li J, Shang J, Zhou Y, et al. Finite element analysis of a new pedicle screw-plate system for minimally invasive transforaminal lumbar interbody fusion [J]. PLoS One, 2015, 10(12): e0144637. doi:10.1371/journal.pone.0144637. [11] Pimenta L, Tohmeh A, Jones D, et al. Rational decision making in a wide scenario of different minimally invasive lumbar interbody fusion approaches and devices [J]. J Spine Surg, 2018, 4(1): 142-155. [12] Ding WB, Chen YL, Liu H, et al. Comparison of unilateral versus bilateral pedicle screw fixation in lumbar interbody fusion: a meta-analysis [J]. Eur Spine J, 2014, 23(2): 395-403. [13] 丁金勇, 徐继禧, 谭成双, 等. 不同关节突关节不对称衡量标准的有限元评价[J]. 山东大学学报(医学版), 2020, 58(6): 97-103. DING Jinyong, XU Jixi, TAN Chengshuang, et al. Finite element evaluation of different facet tropism criteria [J]. Journal of Shandong University(Health Sciences), 2020, 58(6): 97-103. [14] 殷飞, 马荣, 蔡则成, 等. 斜外侧椎间融合联合单侧椎弓根钉棒固定术的三维有限元分析[J]. 中国脊柱脊髓杂志, 2019, 29(8): 732-740. YIN Fei, MA Rong, CAI Zecheng, et al. Three-dimensional finite element analysis of oblique lateral lumbar interbody fusion combined with unilateral pedicle screw fixation [J]. Chinese Journal of Spine and Spinal Cord, 2019, 29(8): 732-740. [15] 秦一川, 赵斌, 原杰, 等. 三维有限元法分析内固定类型及骨质疏松对斜外侧椎间融合的影响[J]. 中国组织工程研究, 2021, 25(30): 4767-4773. QIN Yichuan, ZHAO Bin, YUAN Jie, et al. Effects of internal fixation types and osteoporosis on oblique lateral interbody fusion: three dimensional finite element analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(30): 4767-4773. [16] 郝家齐, 王永峰, 原杰, 等. 斜外侧椎间融合术融合器沉降对腰椎生物力学影响的有限元分析[J]. 中国脊柱脊髓杂志, 2021, 31(3): 254-261. HAO Jiaqi, WANG Yongfeng, YUAN Jie, et al. Finite element analysis of lumbar biomechanical effects of cage subsidence in oblique lateral interbody fusion [J]. Chinese Journal of Spine and Spinal Cord, 2021, 31(3): 254-261. [17] 郭惠智, 梁德, 张顺聪, 等. 斜外侧入路椎间融合术不同内固定方式的有限元分析[J]. 医学研究生学报, 2020, 33(4): 394-398. GUO Huizhi, LIANG De, ZHANG Shuncong, et al. Different internal fixation methods of oblique lateral interbody fusion: a finite element analysis [J]. Journal of Medical Postgraduates, 2020, 33(4): 394-398. [18] Shim CS, Park SW, Lee SH, et al. Biomechanical evaluation of an interspinous stabilizing device, Locker [J]. Spine(Phila Pa 1976), 2008, 33(22): 820-827. [19] Fang G, Lin Y, Wu J, et al. Biomechanical comparison of stand-alone and bilateral pedicle screw fixation for oblique lumbar interbody fusion surgery-A finite element analysis [J]. World Neurosurg, 2020, 141: 204-212. doi:10.1016/j.wneu.2020.05.245. [20] Guo HZ, Tang YC, Guo DQ, et al. Stability evaluation of oblique lumbar interbody fusion constructs with various fixation options: a finite element analysis based on three-dimensional scanning models [J]. World Neurosurg, 2020, 138: 530-538. doi:10.1016/j.wneu.2020.02.180. [21] Ke W, Wang B, Hua W, et al. Biomechanical evaluation of the sacral slope on the adjacent segment in transforaminal lumbar interbody fusion: a finite element analysis [J]. World Neurosurg, 2020, 133: e84-e88.doi: 10.1016/j.wneu.2019.08.113. [22] Areias B, Caetano SC, Sousa LC, et al. Numerical simulation of lateral and transforaminal lumbar interbody fusion, two minimally invasive surgical approaches [J]. Comput Methods Biomech Biomed Eng, 2020, 23(8): 408-421. [23] Xu DS, Walker CT, Godzik J, et al. Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review [J]. Ann Transl Med, 2018, 6(6): 104. [24] Silvestre C, Mac-Thiong JM, Hilmi R, et al. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients [J]. Asian Spine J, 2012, 6(2): 89-97. [25] Li XC, Huang CM, Zhong CF, et al. Minimally invasive procedure reduces adjacent segment degeneration and disease: New benefit-based global meta-analysis [J]. PLoS One, 2017, 12(2): e0171546. doi:10.1371/journal.pone.0171546. [26] Quillo-Olvera J, Lin GX, Jo HJ, et al. Complications on minimally invasive oblique lumbar interbody fusion at L2-L5 levels: a review of the literature and surgical strategies [J]. Ann Transl Med, 2018, 6(6): 101. [27] Li HM, Zhang RJ, Shen CL. Radiographic and clinical outcomes of oblique lateral interbody fusion versus minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar disease [J]. World Neurosurg, 2019, 122: 627-638. doi:10.1016/j.wneu.2018.10.115. [28] Lu T, Lu Y. Comparison of biomechanical performance among posterolateral fusion and transforaminal, extreme, and oblique lumbar interbody fusion: a finite element analysis [J]. World Neurosurg, 2019, 129: 890-899. doi:10.1016/j.wneu.2019.06.074. [29] Song C, Chang H, Zhang D, et al. Biomechanical evaluation of oblique lumbar interbody fusion with various fixation options: a finite element analysis [J]. Orthop Surg, 2021, 13(2): 517-529. [30] Zhao C, Wang X, Chen C, et al. Finite element analysis of minimal invasive transforaminal lumbar interbody fusion [J]. Cell Biochem Biophys, 2014, 70(1): 609-613. doi:10.1007/s12013-014-9963-y. [31] Matur AV, Mejia-Munne JC, Plummer ZJ, et al. The history of anterior and lateral approaches to the lumbar spine [J]. World Neurosurg, 2020, 144: 213-221. doi:10.1016/j.wneu.2020.09.083. [32] Ahn Y, Youn MS, Heo DH. Endoscopic transforaminal lumbar interbody fusion: a comprehensive review [J]. Expert Rev Med Devices, 2019, 16(5): 373-380. [33] 肖波. MIS-TLIF采用不同内固定的三维有限元研究[D]. 北京: 中国人民解放军医学院, 2013. |
[1] | DING Jinyong, XU Jixi, TAN Chengshuang, LIU Juncheng, LI Mingbo, XIE Weixing, REN Dongcheng. Finite element evaluation of different facet tropism criteria [J]. Journal of Shandong University (Health Sciences), 2020, 58(6): 97-103. |
[2] |
YU Hai-qun1, ZHANG Yong1, TAO Xiang-chen1, DANG Hui2, LI Zhi-wei1, WANG Xiao-jun3, MU Guo-ying1.
Different biomechanical properties of rabbit corneas after cross-linking between the epithelium and de-epithelium groups [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(4): 80-. |
[3] | JIN Shu-mei1, WANG Xu-xia1,3, ZHANG Li-na1, REN Xu-sheng1,2, ZHANG Jun1,3. Three dimensional finite element analysis of displacement trends and periodontal stress distribution when a maxillary impacted canine are tracted in different condition [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(12): 67-74. |
[4] | . Threedimensional finite element analysis of molars′s distalization during different extraction periods of healing [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(10): 68-71. |
[5] | LIU Wen-guang,LI Jian-min,LIU Kai-hong,YANG Zhi-ping,LI Xin. Broken custommade tumor prosthesis with a finite element method and sleeve prosthesis for revision [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(4): 430-432. |
|