Journal of Shandong University (Health Sciences) ›› 2022, Vol. 60 ›› Issue (1): 55-64.doi: 10.6040/j.issn.1671-7554.0.2021.0609

Previous Articles     Next Articles

Afinite element analysis of three different fusion methods of lumbar internal fixation

LI Mingbo1, HUANG Yanbo1, REN Dongcheng2, LIU Juncheng1, TAN Chengshuang3, XU Jixi4, DING Jinyong4   

  1. 1. The First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong, China;
    2. Department of Orthopedics, The Third Peoples Hospital of Shenzhen, Shenzhen 518112, Guangdong, China;
    3. Department of Orthopedics, The Second Peoples Hospital of Panyu Guangzhou, Guangzhou 511400, Guangdong, China;
    4. Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
  • Published:2022-01-08

Abstract: Objective To observe the biomechanical differences between the operative segments and adjacent segments of three different lumbar internal fixation and fusion methods. Methods Three models of L4-5 internal fixation fusion mode were constructed, including oblique lateral interbody fusion(OLIF)model, unilateral minimally invasive surgery-transforaminal lumbar interbody fusion(MIS-TLIF)model, and bilateral MIS-TLIF model. Six stress states as normal body were simulated, including forward flexion, extension, left flexion, right flexion, left rotation and right rotation. The changes of the peak stress of the intervertebral disc, the maximum displacement of the vertebral body, the peak stress of the cage, the peak stress of the internal fixation, the peak stress of the endplate under L3 and the peak stress of the endplate on L4 in each model under 6 different motion states were observed and analyzed. Results Among the three models, the OLIF model was significantly lower than the other two models in terms of the peak stress in the intervertebral disc at L3-4, the maximum displacement of the vertebral body at L3, the peak stress of internal fixation and the peak stress of the endplate under L3. In comparison of the stress peak of the cage, the stress peak of the OLIF internal fixation model was significantly lower than that of the unilateral MIS-TLIF model, but in most cases, it was greater than that of the bilateral MIS-TLIF model. However, the stress peak of the cage in the unilateral MIS-TLIF internal fixation model was significantly higher than that in the bilateral MIS-TLIF model. In comparison of internal fixed stress peak, the OLIF model had the best biomechanics, followed by the bilateral MIS-TLIF, and the unilateral MIS-TLIF. Conclusion Among the three finite element research models, OLIF model has the best biomechanical effect and relatively small surgical injury, which provides a reference value for clinicians in the choice of surgery.

Key words: Lumbar internal fixation and fusion, Oblique lateral interbody fusion, Minimally invasive surgery-transforaminal lumbar interbody fusion, Finite element, Biomechanics

CLC Number: 

  • R681.5
[1] Reid PC, Morr S, Kaiser MG. State of the union: a review of lumbar fusion indications and techniques for degenerative spine disease [J]. J Neurosurg Spine, 2019, 31(1): 1-14.
[2] Zhao YC, Wang ZW, Zhu XD, et al. Prediction of postoperative trunk imbalance after posterior spinal fusion with pedicle screw fixation for adolescent idiopathic scoliosis [J]. J Pediatr Orthop Part B, 2011, 20(4): 199-208.
[3] Bode KS, Newton PO. Pediatric nonaccidental trauma thoracolumbar fracture-dislocation: posterior spinal fusion with pedicle screw fixation in an 8-month-old boy [J]. Spine(Phila Pa 1976), 2007, 32(14): 388-393.
[4] Li R, Li X, Zhou H, et al. Development and application of oblique lumbar interbody fusion [J]. Orthop Surg, 2020, 12(2): 355-365.
[5] Hoffmann CH, Kandziora F. Minimal-invasive transforaminale lumbale interkorporelle Fusion [J]. Oper Orthopödie Und Traumatol, 2020, 32(3): 180-191.
[6] Momin AA, Steinmetz MP. Evolution of minimally invasive lumbar spine surgery [J]. World Neurosurg, 2020, 140: 622-626. doi:10.1016/j.wneu.2020.05.071.
[7] Mun HY, Ko MJ, Kim YB, et al. Usefulness of oblique lateral interbody fusion at L5-S1 level compared to transforaminal lumbar interbody fusion [J]. J Korean Neurosurg Soc, 2020, 63(6): 723-729. doi:10.3340/jkns.2018.0215.
[8] Foley KT, Lefkowitz MA. Advances in minimally invasive spine surgery [J]. Clin Neurosurg, 2002, 49: 499-517.
[9] Droeghaag R, Hermans SMM, Caelers IJMH, et al. Cost-effectiveness of open transforaminal lumbar interbody fusion(OTLIF)versus minimally invasive transforaminal lumbar interbody fusion(MITLIF): a systematic review and meta-analysis [J]. Spine J, 2021, 21(6): 945-954.
[10] Li J, Shang J, Zhou Y, et al. Finite element analysis of a new pedicle screw-plate system for minimally invasive transforaminal lumbar interbody fusion [J]. PLoS One, 2015, 10(12): e0144637. doi:10.1371/journal.pone.0144637.
[11] Pimenta L, Tohmeh A, Jones D, et al. Rational decision making in a wide scenario of different minimally invasive lumbar interbody fusion approaches and devices [J]. J Spine Surg, 2018, 4(1): 142-155.
[12] Ding WB, Chen YL, Liu H, et al. Comparison of unilateral versus bilateral pedicle screw fixation in lumbar interbody fusion: a meta-analysis [J]. Eur Spine J, 2014, 23(2): 395-403.
[13] 丁金勇, 徐继禧, 谭成双, 等. 不同关节突关节不对称衡量标准的有限元评价[J]. 山东大学学报(医学版), 2020, 58(6): 97-103. DING Jinyong, XU Jixi, TAN Chengshuang, et al. Finite element evaluation of different facet tropism criteria [J]. Journal of Shandong University(Health Sciences), 2020, 58(6): 97-103.
[14] 殷飞, 马荣, 蔡则成, 等. 斜外侧椎间融合联合单侧椎弓根钉棒固定术的三维有限元分析[J]. 中国脊柱脊髓杂志, 2019, 29(8): 732-740. YIN Fei, MA Rong, CAI Zecheng, et al. Three-dimensional finite element analysis of oblique lateral lumbar interbody fusion combined with unilateral pedicle screw fixation [J]. Chinese Journal of Spine and Spinal Cord, 2019, 29(8): 732-740.
[15] 秦一川, 赵斌, 原杰, 等. 三维有限元法分析内固定类型及骨质疏松对斜外侧椎间融合的影响[J]. 中国组织工程研究, 2021, 25(30): 4767-4773. QIN Yichuan, ZHAO Bin, YUAN Jie, et al. Effects of internal fixation types and osteoporosis on oblique lateral interbody fusion: three dimensional finite element analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(30): 4767-4773.
[16] 郝家齐, 王永峰, 原杰, 等. 斜外侧椎间融合术融合器沉降对腰椎生物力学影响的有限元分析[J]. 中国脊柱脊髓杂志, 2021, 31(3): 254-261. HAO Jiaqi, WANG Yongfeng, YUAN Jie, et al. Finite element analysis of lumbar biomechanical effects of cage subsidence in oblique lateral interbody fusion [J]. Chinese Journal of Spine and Spinal Cord, 2021, 31(3): 254-261.
[17] 郭惠智, 梁德, 张顺聪, 等. 斜外侧入路椎间融合术不同内固定方式的有限元分析[J]. 医学研究生学报, 2020, 33(4): 394-398. GUO Huizhi, LIANG De, ZHANG Shuncong, et al. Different internal fixation methods of oblique lateral interbody fusion: a finite element analysis [J]. Journal of Medical Postgraduates, 2020, 33(4): 394-398.
[18] Shim CS, Park SW, Lee SH, et al. Biomechanical evaluation of an interspinous stabilizing device, Locker [J]. Spine(Phila Pa 1976), 2008, 33(22): 820-827.
[19] Fang G, Lin Y, Wu J, et al. Biomechanical comparison of stand-alone and bilateral pedicle screw fixation for oblique lumbar interbody fusion surgery-A finite element analysis [J]. World Neurosurg, 2020, 141: 204-212. doi:10.1016/j.wneu.2020.05.245.
[20] Guo HZ, Tang YC, Guo DQ, et al. Stability evaluation of oblique lumbar interbody fusion constructs with various fixation options: a finite element analysis based on three-dimensional scanning models [J]. World Neurosurg, 2020, 138: 530-538. doi:10.1016/j.wneu.2020.02.180.
[21] Ke W, Wang B, Hua W, et al. Biomechanical evaluation of the sacral slope on the adjacent segment in transforaminal lumbar interbody fusion: a finite element analysis [J]. World Neurosurg, 2020, 133: e84-e88.doi: 10.1016/j.wneu.2019.08.113.
[22] Areias B, Caetano SC, Sousa LC, et al. Numerical simulation of lateral and transforaminal lumbar interbody fusion, two minimally invasive surgical approaches [J]. Comput Methods Biomech Biomed Eng, 2020, 23(8): 408-421.
[23] Xu DS, Walker CT, Godzik J, et al. Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review [J]. Ann Transl Med, 2018, 6(6): 104.
[24] Silvestre C, Mac-Thiong JM, Hilmi R, et al. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients [J]. Asian Spine J, 2012, 6(2): 89-97.
[25] Li XC, Huang CM, Zhong CF, et al. Minimally invasive procedure reduces adjacent segment degeneration and disease: New benefit-based global meta-analysis [J]. PLoS One, 2017, 12(2): e0171546. doi:10.1371/journal.pone.0171546.
[26] Quillo-Olvera J, Lin GX, Jo HJ, et al. Complications on minimally invasive oblique lumbar interbody fusion at L2-L5 levels: a review of the literature and surgical strategies [J]. Ann Transl Med, 2018, 6(6): 101.
[27] Li HM, Zhang RJ, Shen CL. Radiographic and clinical outcomes of oblique lateral interbody fusion versus minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar disease [J]. World Neurosurg, 2019, 122: 627-638. doi:10.1016/j.wneu.2018.10.115.
[28] Lu T, Lu Y. Comparison of biomechanical performance among posterolateral fusion and transforaminal, extreme, and oblique lumbar interbody fusion: a finite element analysis [J]. World Neurosurg, 2019, 129: 890-899. doi:10.1016/j.wneu.2019.06.074.
[29] Song C, Chang H, Zhang D, et al. Biomechanical evaluation of oblique lumbar interbody fusion with various fixation options: a finite element analysis [J]. Orthop Surg, 2021, 13(2): 517-529.
[30] Zhao C, Wang X, Chen C, et al. Finite element analysis of minimal invasive transforaminal lumbar interbody fusion [J]. Cell Biochem Biophys, 2014, 70(1): 609-613. doi:10.1007/s12013-014-9963-y.
[31] Matur AV, Mejia-Munne JC, Plummer ZJ, et al. The history of anterior and lateral approaches to the lumbar spine [J]. World Neurosurg, 2020, 144: 213-221. doi:10.1016/j.wneu.2020.09.083.
[32] Ahn Y, Youn MS, Heo DH. Endoscopic transforaminal lumbar interbody fusion: a comprehensive review [J]. Expert Rev Med Devices, 2019, 16(5): 373-380.
[33] 肖波. MIS-TLIF采用不同内固定的三维有限元研究[D]. 北京: 中国人民解放军医学院, 2013.
[1] DING Jinyong, XU Jixi, TAN Chengshuang, LIU Juncheng, LI Mingbo, XIE Weixing, REN Dongcheng. Finite element evaluation of different facet tropism criteria [J]. Journal of Shandong University (Health Sciences), 2020, 58(6): 97-103.
[2] YU Hai-qun1, ZHANG Yong1, TAO Xiang-chen1, DANG Hui2, LI Zhi-wei1, WANG Xiao-jun3, MU Guo-ying1. Different biomechanical properties of rabbit corneas after cross-linking
between the epithelium and de-epithelium groups
[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(4): 80-.
[3] JIN Shu-mei1, WANG Xu-xia1,3, ZHANG Li-na1, REN Xu-sheng1,2, ZHANG Jun1,3. Three dimensional finite element analysis of displacement trends and periodontal stress distribution when a maxillary impacted canine are tracted in different condition [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(12): 67-74.
[4] . Threedimensional finite element analysis of molars′s distalization during different extraction periods of healing [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(10): 68-71.
[5] LIU Wen-guang,LI Jian-min,LIU Kai-hong,YANG Zhi-ping,LI Xin. Broken custommade tumor prosthesis with a finite element method and sleeve prosthesis for revision [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(4): 430-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 47 -52 .
[2] LI Wei,LI Dao-wei,YE Qian,GAO Shun-cui,JIANG Shu-juan.

Diagnostic value of transbronchial needle aspiration in paratracheal mediastinal lesions

[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(11): 1063 -1065 .
[3] WANG Xu-ping,ZHAO Ling,FENG Yu-xin,SHANG Lin-shan,LIU Jin-cheng,. [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2006, 44(6): 564 -567 .
[4] WANG Xue-ping,YANG Hong-ling. [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, (2): 213 .
[5] HUANG Sheng-yun,ZHANG Dong-sheng,ZHANG Shi-zhou,LIU Gui-jun,ZHAO Yue-ran,WANG Lai-cheng,LIU Yi-qing. Construction of recombination expression vector pIRES-CD and pIRES-TK and their expression in ACC-2 cells[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(2): 117 -123 .
[6] LYU Longfei, LI Lin, LI Shuhai, QI Lei, LU Ming, CHENG Chuanle, TIAN Hui. Application of laparoscopic fine needle catheter jejunostomy in minimally invasive McKeown resection of esophageal cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 77 -81 .
[7] SHAO Haigang, WANG Xuan, WANG Qing. Anatomy of the root canal system of mandibular first premolar in population of Shandong Province[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(9): 85 -89 .
[8] HAN Ming-yong,LIU Qi,TANG Bu-jian,DENG Yan,CAO Ming-feng. In vivo vaccine effect and tumorigenicity of human breast carcinoma cells transfered by interleukin-18 gene[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(7): 714 -717 .
[9] LIU Hai-Chun, ZHANG Jian-Feng, CHEN Yuan-zhen. Bone collagen and biomechanical propertyies in the femur of osteoporosis rats[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(5): 42 -45 .
[10] FENG Fuli1, WEI Shuzhen2, ZHANG Yonghuan3, LI Li1, CHEN Rong1, LIRuifeng1. Relationship between high mortality and altered expression of Klotho in insulin resistance rats[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(6): 5 -8 .