[1] |
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th)edition [J]. Diabetes Res Clin Pract, 2019, 157: 107843. doi: 10.1016/j.diabres.2019.107843.
|
[2] |
Dominguez-Cruz MG, de Lourdes MM, Totomoch-Serra A, et al. Maya gene variants related to the risk of type 2 diabetes in a family-based association study [J]. Gene, 2020, 730: 144259. doi: 10.1016/j.gene.2019.144259.
|
[3] |
Almgren P, Lehtovirta M, Isomaa B, et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study [J]. Diabetologia, 2011, 54(11): 2811-2819.
|
[4] |
Merino J, Udler M S, Leong A, et al. A Decade of Genetic and Metabolomic Contributions to Type 2 Diabetes Risk Prediction [J]. Curr Diab Rep, 2017,17(12): 135.
|
[5] |
莫志伟, 欧志君, 区景松. 高密度脂蛋白的水平与功能[J]. 生理科学进展, 2018,49(4): 247-252. MO Zhiwei, OU Zhijun, OU Jingsong. High Density Lipoprotein: Levels and Functions [J]. Progress in Physiological Sciences, 2018, 49(4): 247-252.
|
[6] |
Hermans MP, Valensi P. Elevated triglycerides and low high-density lipoprotein cholesterol level as marker of very high risk in type 2 diabetes [J]. Curr Opin Endocrinol Diabetes Obes, 2018, 25(2): 118-129.
|
[7] |
Jain P, Vig S, Datta M, et al. Systems biology approach reveals genome to phenome correlation in type 2 diabetes [J]. PLoS One, 2013, 8(1): e53522.
|
[8] |
Frederiksen CM, Hojlund K, Hansen L, et al. Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes [J]. Diabetologia, 2008, 51(11): 2068-2077.
|
[9] |
Dalmas E, Venteclef N, Caer C, et al. T cell-derived IL-22 amplifies IL-1beta-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes [J]. Diabetes, 2014, 63(6): 1966-1977.
|
[10] |
van Tienen F H, van der Kallen C J, Lindsey P J, et al. Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity [J]. Int J Obes(Lond), 2011, 35(9): 1154-1164.
|
[11] |
Haemmerle M, Keller T, Egger G, et al. Enhanced lymph vessel density, remodeling, and inflammation are reflected by gene expression signatures in dermal lymphatic endothelial cells in type 2 diabetes [J]. Diabetes, 2013, 62(7): 2509-2529.
|
[12] |
Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus [J]. PLoS One, 2011, 6(8): e22839.
|
[13] |
Grayson BL, Wang L, Aune TM. Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes [J]. Genes Immun, 2011, 12(5): 341-351.
|
[14] |
Kaizer EC, Glaser CL, Chaussabel D, et al. Gene expression in peripheral blood mononuclear cells from children with diabetes [J]. J Clin Endocrinol Metab, 2007, 92(9): 3705-3711.
|
[15] |
Kanatsuna N, Taneera J, Vaziri-Sani F, et al. Autoimmunity against INS-IGF2 protein expressed in human pancreatic islets [J]. J Biol Chem, 2013, 288(40): 29013-29023.
|
[16] |
Taneera J, Fadista J, Ahlqvist E, et al. Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes [J]. Mol Cell Endocrinol, 2013, 375(1-2): 35-42.
|
[17] |
Taneera J, Lang S, Sharma A, et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets [J]. Cell Metab, 2012, 16(1): 122-134.
|
[18] |
Dominguez V, Raimondi C, Somanath S, et al. Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells [J]. J Biol Chem, 2011, 286(6): 4216-4225.
|
[19] |
Andreou E, Papandreou D, Hajigeorgiou P, et al. Type 2 diabetes and its correlates in a first nationwide study among Cypriot adults [J]. Prim Care Diabetes, 2017, 11(2): 112-118.
|
[20] |
Chen L, Chen XW, Huang X, et al. Regulation of glucose and lipid metabolism in health and disease [J]. Sci China Life Sci, 2019, 62(11): 1420-1458.
|
[21] |
Ding J, Reynolds LM, Zeller T, et al. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease [J]. Diabetes, 2015, 64(10): 3464-3474.
|
[22] |
Dullaart R, Pagano S, Perton FG, et al. Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus [J]. Int J Mol Sci, 2019, 20(3). pii: E732. doi: 10.3390/ijms20030732.
|
[23] |
Leanca CC, Nunes VS, Nakandakare ER, et al. Does plasma HDL-C concentration interact with whole-body cholesterol metabolism? [J]. Nutr Metab Cardiovasc Dis, 2013, 23(4): 279-284.
|
[24] |
Montemurro C, Nomoto H, Pei L, et al. IAPP toxicity activates HIF1alpha/PFKFB3 signaling delaying beta-cell loss at the expense of beta-cell function [J]. Nat Commun, 2019, 10(1): 2679.
|
[25] |
Lin Y, Shen J, Li D, et al. MiR-34a contributes to diabetes-related cochlear hair cell apoptosis via SIRT1/HIF-1alpha signaling [J]. Gen Comp Endocrinol, 2017, 246: 63-70.
|
[26] |
Li L, Pan Z, Yang X. Key genes and co-expression network analysis in the livers of type 2 diabetes patients [J]. J Diabetes Investig, 2019, 10(4): 951-962.
|
[27] |
Nishiyama Y, Goda N, Kanai M, et al. HIF-1alpha induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice [J]. J Hepatol, 2012, 56(2): 441-447.
|
[28] |
Arias-Loste M T, Fabrega E, Lopez-Hoyos M, et al. The Crosstalk between Hypoxia and Innate Immunity in the Development of Obesity-Related Nonalcoholic Fatty Liver Disease [J]. Biomed Res Int, 2015, 2015: 319745.
|
[29] |
Walter KM, Schonenberger MJ, Trotzmuller M, et al. Hif-2alpha promotes degradation of mammalian peroxisomes by selective autophagy [J]. Cell Metab, 2014, 20(5): 882-897.
|
[30] |
Taha IM, Abdu AA, Abd EGE. Expression of toll-like receptor 4 and its connection with type 2 diabetes mellitus [J]. Cell Mol Biol(Noisy-le-grand), 2018, 64(13): 15-20.
|
[31] |
Westwell-Roper C, Nackiewicz D, Dan M, et al. Toll-like receptors and NLRP3 as central regulators of pancreatic islet inflammation in type 2 diabetes[J]. Immunol Cell Biol, 2014, 92(4):314-323.
|
[32] |
Ji Y, Sun S, Shrestha N, et al. Toll-like receptors TLR2 and TLR4 block the replication of pancreatic beta cells in diet-induced obesity[J]. Nat Immunol, 2019, 20(6):677-686.
|
[33] |
Yamada H, Umemoto T, Kawano M, et al. High-density lipoprotein and apolipoprotein A-I inhibit palmitate-induced translocation of toll-like receptor 4 into lipid rafts and inflammatory cytokines in 3T3-L1 adipocytes[J]. Biochem Biophys Res Commun, 2017, 484(2):403-408.
|
[34] |
Schuchardt M, Prufer N, Tu Y, et al. Dysfunctional high-density lipoprotein activates toll-like receptors via serum amyloid A in vascular smooth muscle cells[J]. Sci Rep, 2019, 9(1):3421.
|
[35] |
Reyna S M, Ghosh S, Tantiwong P, et al. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects[J]. Diabetes, 2008, 57(10):2595-2602.
|
[36] |
Zhang X, Hiam D, Hong YH, et al. Nitric oxide is required for the insulin sensitizing effects of contraction in mouse skeletal muscle[J]. J Physiol, 2017, 595(24):7427-7439.
|
[37] |
Hopf AE, Andresen C, Kotter S, et al. Diabetes-Induced Cardiomyocyte Passive Stiffening Is Caused by Impaired Insulin-Dependent Titin Modification and Can Be Modulated by Neuregulin-1[J]. Circ Res, 2018, 123(3):342-355.
|
[38] |
Kuo KK, Wu BN, Liu CP, et al. Xanthine-based KMUP-1 improves HDL via PPARgamma/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss[J]. J Lipid Res, 2015, 56(11):2070-2084.
|