Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (1): 81-89.doi: 10.6040/j.issn.1671-7554.0.2024.0558
• Clinical Research • Previous Articles
LI Yong1, CUI Shujun1, YANG Fei1, ZHANG Fan2, YIN Xiaoxia2
CLC Number:
[1] 初竹秀, 赵文静, 李小燕, 等. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报(医学版), 2021, 59(9): 130-139. CHU Zhuxiu, ZHAO Wenjing, LI Xiaoyan, et al. Significance of neoadjuvant chemotherapy and molecular marker changes in 218 women with breast cancer[J]. Journal of Shandong University(Health Sciences), 2021, 59(9): 130-139. [2] Haque W, Verma V, Hatch S, et al. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy[J]. Breast Cancer Res Treat, 2018, 170(3): 559-567. [3] Fayanju OM, Ren Y, Thomas SM, et al. The clinical significance of breast-only and node-only pathologic complete response(pCR)after neoadjuvant chemotherapy(NACT): a review of 20, 000 breast cancer patients in the national cancer data base(NCDB)[J]. Ann Surg, 2018, 268(4): 591-601. [4] Spring LM, Fell G, Arfe A, et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis[J]. Clin Cancer Res, 2020, 26(12): 2838-2848. [5] Lüönd F, Tiede S, Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression[J]. Br J Cancer, 2021, 125(2): 164-175. [6] Wu J, Cao GH, Sun XL, et al. Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy[J]. Radiology, 2018, 288(1): 26-35. [7] Whybra P, Zwanenburg A, Andrearczyk V, et al. The image biomarker standardization initiative: standardized convolutional filters for reproducible radiomics and enhanced clinical insights[J]. Radiology, 2024, 310(2): e231319. doi:10.1148/radiol.231319. [8] 焦光丽, 石子馨, 陈蓉, 等. 基于增强CT影像组学预测卵巢癌患者铂类药物敏感性[J]. 山东大学学报(医学版), 2023, 61(12): 62-69. JIAO Guangli, SHI Zixin, CHEN Rong, et al. Radiomics of enhanced CT in predicting the response to platinum-based chemotherapy for ovarian cancer[J]. Journal of Shandong University(Health Sciences), 2023, 61(12): 62-69. [9] Qi YJ, Su GH, You C, et al. Radiomics in breast cancer: current advances and future directions[J]. Cell Rep Med, 2024, 5(9): 101719. doi:10.1016/j.xcrm.2024.101719. [10] 王浩天, 于韬, 徐姝. MRI影像组学在乳腺癌新辅助化疗中应用的研究进展[J]. 中国临床医学影像杂志, 2023, 34(12): 892-896. WANG Haotian, YU Tao, XU Shu. Research progress on the application of MRI radiomics in neoadjuvant chemotherapy for breast cancer[J]. Journal of China Clinic Medical Imaging, 2023, 34(12): 892-896. [11] 张琦,林青,王海波,等. 乳癌新辅助化疗DCE-MRI预测病理完全缓解的应用价值[J].青岛大学学报(医学版), 2023, 59(6): 840-844. ZHANG Qi, LIN Qing, WANG Haibo, et al. Application of dynamic contrast-enhanced magnetic resonance imaging in prediction of pathological complete response of breast cancer treated by neoadjuvant chemotherapy[J]. Journal of Qingdao University(Medical Sciences), 2023, 59(6): 840-844. [12] Verma R, Correa R, Hill VB, et al. Tumor habitat-derived radiomic features at pretreatment MRI that are prognostic for progression-free survival in glioblastoma are associated with key morphologic attributes at histopathologic examination: a feasibility study[J]. Radiol Artif Intell, 2020, 2(6): e190168. doi:10.1148/ryai.2020190168. [13] Xie CY, Yang PF, Zhang XB, et al. Sub-region based radiomics analysis for survival prediction in oesophageal tumours treated by definitive concurrent chemoradiotherapy[J]. EBioMedicine, 2019, 44: 289-297. doi:10.1016/j.ebiom.2019.05.023. [14] Feng SQ, Yin JD. Dynamic contrast-enhanced magnetic resonance imaging radiomics analysis based on intratumoral subregions for predicting luminal and nonluminal breast cancer[J]. Quant Imaging Med Surg, 2023, 13(10): 6735-6749. [15] Ivanova M, Porta FM, D’Ercole M, et al. Standardized pathology report for HER2 testing in compliance with 2023 ASCO/CAP updates and 2023 ESMO consensus statements on HER2-low breast cancer[J]. Virchows Arch, 2024, 484(1): 3-14. [16] Cheng DD, Huang JL, Zhang SL, et al. K-means clustering with natural density peaks for discovering arbitrary-shaped clusters[J]. IEEE Trans Neural Netw Learn Syst, 2024, 35(8): 11077-11090. [17] van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77(21): e104-e107. [18] Pripp AH. Pearsons or Spearmans correlation coefficients[J]. Tidsskr Nor Laegeforen, 2018, 138(8). doi: 10.4045/tidsskr.18.0042. [19] Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective[J]. J R Stat Soc Ser B Stat Methodol, 2011, 73(3): 273-282. [20] Zhang JQ, Wu Q, Yin W, et al. Development and validation of a radiopathomic model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer patients[J]. BMC Cancer, 2023, 23(1): 431. doi:10.1186/s12885-023-10817-2. [21] Bertucci F, Finetti P, Viens P, et al. EndoPredict predicts for the response to neoadjuvant chemotherapy in ER-positive, HER2-negative breast cancer[J]. Cancer Lett, 2014, 355(1): 70-75. [22] Straver ME, Glas AM, Hannemann J, et al. The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer[J]. Breast Cancer Res Treat, 2010, 119(3): 551-558. [23] Jiang M, Li CL, Luo XM, et al. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer[J]. Eur J Cancer, 2021, 147: 95-105. doi:10.1016/j.ejca.2021.01.028. [24] Huang YH, Zhu T, Zhang XL, et al. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study[J]. EClinicalMedicine, 2023, 58: 101899. doi:10.1016/j.eclinm.2023.101899. [25] Shi ZW, Huang XM, Cheng ZL, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J]. Radiology, 2023, 308(1): e222830. doi:10.1148/radiol.222830. |
[1] | YU Zhigang, ZHENG Chao. Current status, challenges and innovative approaches of multidisciplinary treatment for breast cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 1-9. |
[2] | . Shandong Province expert consensus on multidisciplinary treatment of breast cancer(2024 edition) [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 10-16. |
[3] | CHENG Yueqi, WANG Fei, YU Lixiang, ZHENG Chao, YU Zhigang. Progress in the study of trastuzumab-induced cardiotoxicity in HER2-positive breast cancer patients [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 17-24. |
[4] | WANG Min, LI Xiping, TAN Jun, QIU Mei, HOU Zeyu, TIAN Ying, LUO Hongying, FAN Chaowen, QI Ling, YU Qi, XIE Wei. Lentivirus vector-mediated Gag-Caspase-8 induces apoptosis and S-phase arrest in triple-negative breast cancer primary cells [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 25-34. |
[5] | ZHANG Jie, ZHANG Fangfang, WANG Jingnan, LI Zeyu, SONG Ying, LI Na. Expression of circ_0000144 in breast cancer and its effect on the proliferation, migration and invasion ability of breast cancer cells [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 35-42. |
[6] | SONG Yawen, GUO Liantao, KONG Deguang, SUN Shengrong. VTCN1 causes poor prognosis and endocrine therapy resistance in HR+ breast cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 43-59. |
[7] | LIU Jingjing, PANG Jing, ZHAO Xiaodan, LIN Xin, FU Min, CHEN Jingjing. Machine learning model based on mammography and DCE-MRI to predict pathological complete response after neoadjuvant therapy in breast cancer: a dual center research [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 60-72. |
[8] | SUN Jing, YANG Ruimin, WANG Cong, ZHANG Yue, LUO Bing. Combined models based on preoperative ultrasound, inflammatory indicators and ultrasound radiomics for predicting axillary lymph node metastasis of breast cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 73-80. |
[9] | LIU Xiangrong, ZHANG Xinsheng, YANG Jinran, YANG Xueyan, LIU Zhao, LIU Yinghua. Association of the ratio of ω-6/ω-3 polyunsaturated fatty acids with various tumor types risk: a systematic review and Meta-analysis [J]. Journal of Shandong University (Health Sciences), 2024, 62(8): 34-48. |
[10] | SUN Lina, BAI Hongyan, NIU Zongge, ZHANG Fushuai, QU Yiqing. Construction and evaluation of an online clinical risk model for predicting in-hospital mortality in patients with ARDS based on SII [J]. Journal of Shandong University (Health Sciences), 2024, 62(7): 10-20. |
[11] | ZHANG Nana, ZHAO Yiming, LIU Xinmin. Causal relationship between uterine leiomyomas and breast cancer: a two-sample Mendelian randomization study [J]. Journal of Shandong University (Health Sciences), 2023, 61(8): 86-93. |
[12] | JIN Shan, GAO Jie, XIE Yujiao, ZHAN Yao, DU Tiantian, WANG Chuanxin. Effects of methyltransferase PRMT5 on stabilizing USP15 to promote the occurrence and development of breast cancer [J]. Journal of Shandong University (Health Sciences), 2023, 61(7): 1-11. |
[13] | ZHONG Lu, XUE Fuzhong. A Lung cancer risk prediction model based on Bayesian network uncertainty inference [J]. Journal of Shandong University (Health Sciences), 2023, 61(4): 86-94. |
[14] | DONG Xiangjun, LI Juan, KONG Xue, LI Peilong, ZHAO Wenjing, LIANG Yiran, WANG Lili, DU Lutao, WANG Chuanxin. Effects of circular RNA hsa_circ_0008591 on tumor biological behavior of breast cancer cells [J]. Journal of Shandong University (Health Sciences), 2023, 61(2): 78-87. |
[15] | WANG Jianhua, SUN Shuqing, ZHANG Xiaodong, YANG Xiaoxiao, WANG Youjian, LU Jinbao, LI Zanwu. Construction of a risk prediction model for ventilator weaning in mechanically ventilated patients in ICU [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 86-93. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 11
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|