Journal of Shandong University (Health Sciences) ›› 2023, Vol. 61 ›› Issue (3): 46-56.doi: 10.6040/j.issn.1671-7554.0.2023.0018

• Expert Overview • Previous Articles     Next Articles

Research advances of spine surgery robot

Fuxin DU1,Tichong ZHANG1,Qianqian LI2,Rui SONG3,*()   

  1. 1. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
    2. School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
    3. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2023-01-05 Online:2023-03-10 Published:2023-03-24
  • Contact: Rui SONG E-mail:rsong@sdu.edu.cn

Abstract:

Spine surgery robot has advantages of accurate positioning, stable operation and reduced radiation exposure. With great clinical application value, it has become a hot field of research and application in recent years. This paper classifies spine surgery robot into guided and active operation according to different scenarios, and introduces spine robots developed by domestic and foreign research institutions and companies and their latest achievements, and elaborates and summarizes the key technologies and future development trends.

Key words: Spine, Robot, Assisted positioning, Nail set, Grinding

CLC Number: 

  • R687.1

Fig.1

Classification and development of spine surgery robots"

Fig.2

Mazor series spine surgery robots A: Spine assist; B: Renaissance; C: Mazor X; D: Mazor X stealth."

Fig.3

FDA-certified commercial spine robots A: ROSA robot; B: Excelsius GPS robot; C: Cirq robot."

Fig.4

Foreign research institutions guide robot systems A: ActBot system; B: B-RobⅡ system; C: 5 degrees of freedom parallel robot; D: Adsorption spine robot; E: SPINEBOT."

Fig.5

Ti robot system A: Ti spine surgery robot; B: Assists in pinning effect."

Fig.6

SPINEBOT I spine surgery system"

Fig.7

Vector-Bot robot system"

Fig.8

Drilling robots developed by foreign research institutions A: Corass robot; B: Friction wheeled bone drill robot; C: Tokyo University of Agriculture and Technology NIR."

Fig.9

Drilling spine robots developed by domestic research institutions A: Robotic system for minimally invasive spine surgery; B: RSSS system; C: Master-slave spine robot; D: Hybrid spine robot."

Fig.10

Xinjunte ORTHBOT robot"

Fig.11

Kinguide robot system"

Fig.12

Shenzhen Institute of Advanced Technology related robot system A: Grinding robots; B: RSSS-Ⅲ system."

Fig.13

Sound pressure identification grinding robot system of Nankai University"

Fig.14

Representative grinding robots of domestic research institutions A: Grinding robot of Peking Union Medical College; B: Harbin Institute of Technology (Shenzhen) grinding robot."

Fig.15

St. Louis University Spine Robotic System, USA"

Fig.16

Johns Hopkins University piezoelectric robot"

Fig.17

Johns Hopkins University continuum grinding drills"

Fig.18

Daegu Gyeongbuk National Institute of Science and Technology continuous drilling"

Fig.19

Spine surgery robot of Chinese University of Hong Kong A: Miniature bendable grinding system; B: Miniature bone drill system."

Fig.20

Diagram of the surgical navigation system"

Fig.21

Split vertebral body of the spine"

1 Sukovich W , Brink-Danan S , Hardenbrook M . Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist[J]. Int J Med Robot, 2006, 2 (2): 114- 122.
doi: 10.1002/rcs.86
2 Togawa D , Kayanja MM , Reinhardt MK , et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2: evaluation of system accuracy[J]. Neurosurgery, 2007, 60 (2): 129- 139.
3 Khan A , Meyers JE , Siasios I , et al. Next-generation robotic spine surgery: first report on feasibility, safety, and learning curve[J]. Oper Neurosurg (Hagerstown), 2019, 17 (1): 61- 69.
doi: 10.1093/ons/opy280
4 Lefranc M , Peltier J . Evaluation of the ROSATM Spine robot for minimally invasive surgical procedures[J]. Expert Rev Med Devices, 2016, 13 (10): 899- 906.
doi: 10.1080/17434440.2016.1236680
5 Stoianovici D , Cleary K , Patriciu A , et al. AcuBot: a robot for radiological interventions[J]. IEEE Trans Robotics Autom, 2003, 19 (5): 927- 930.
doi: 10.1109/TRA.2003.817072
6 Korb W , Kornfeld M , Birkfellner W , et al. Risk analysis and safety assessment in surgical robotics: a case study on a biopsy robot[J]. Minim Invasive Ther Allied Technol, 2005, 14 (1): 23- 31.
doi: 10.1080/13645700510010827
7 Maurin B , Bayle B , Piccin O , et al. A patient-mounted robotic platform for CT-scan guided procedures[J]. IEEE Trans Biomed Eng, 2008, 55 (10): 2417- 2425.
doi: 10.1109/TBME.2008.919882
8 Bekku A, Kim J, Nakajima Y, et al. A body-mounted surgical assistance robot for minimally invasive spinal puncture surgery[C]//5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Sao Paulo: IEEE, 2014: 19-23.
9 Chung J , Kim S , Yi BJ , et al. Cadaver study for spinal fusion surgery using an image-guided surgical robot system[J]. Int J Control Autom Syst, 2010, 8 (3): 564- 573.
doi: 10.1007/s12555-010-0309-2
10 田伟, 王晋超, 刘亚军, 等. 上颈椎手术方式回顾及应用机器人辅助上颈椎手术的体会[J]. 中国医疗器械信息, 2017, 23 (7): 9- 13.
doi: 10.3969/j.issn.1006-6586.2017.07.002
TIAN Wei , WANG Jinchao , LIU Yajun , et al. Review of upper cervical spine surgery and application experience of robot assisted upper cervical[J]. China Medical Device Information, 2017, 23 (7): 9- 13.
doi: 10.3969/j.issn.1006-6586.2017.07.002
11 Tian W , Liu YJ , Liu B , et al. Guideline for thoracolumbar pedicle screw placement assisted by orthopaedic surgical robot[J]. Orthop Surg, 2019, 11 (2): 153- 159.
doi: 10.1111/os.12453
12 Chung GB , Kim S , Lee SG , et al. An image-guided robotic surgery system for spinal fusion[J]. Int J Control Autom Syst, 2006, 4 (1): 30- 41.
13 Ortmaier T , Weiss H , Döbele S , et al. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement[J]. Int J Med Robot, 2006, 2 (4): 350- 363.
doi: 10.1002/rcs.114
14 Lee J, Kim K, Chung WK, et al. Human-guided surgical robot system for spinal fusion surgery: CoRASS[C]//2008 IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008: 3881-3887.
15 Shim S , Choi H , Ji D , et al. Robotic system for bone drilling using a rolling friction mechanism[J]. IEEE/ASME Trans Mechatron, 2018, 23 (5): 2295- 2305.
doi: 10.1109/TMECH.2018.2854890
16 Onogi S , Nakajima Y , Koyama T , et al. Robotic vertebral puncture system for percutaneous vertbroplasty[J]. J Med Biol Eng, 2013, 33 (5): 491- 496.
doi: 10.5405/jmbe.954
17 张鹤. 脊柱微创手术机器人系统(遥控型)及关键技术研究[D]. 重庆: 第三军医大学, 2012.
18 Jin HY , Hu Y , Tian W , et al. Kinematics and cooperative control of a robotic spinal surgery system[J]. Robotica, 2016, 34 (1): 226- 242.
doi: 10.1017/S0263574714001283
19 Rezazadeh S , Bai WB , Sun MJ , et al. Robotic spinal surgery system with force feedback for teleoperated drilling[J]. J Eng, 2019, 2019 (14): 500- 505.
doi: 10.1049/joe.2018.9407
20 李少东. 机器人辅助脊柱微创手术系统及其导航和力控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
21 Hu Y , Jin HY , Zhang LW , et al. State recognition of pedicle drilling with force sensing in a robotic spinal surgical system[J]. IEEE/ASME Trans Mechatron, 2014, 19 (1): 357- 365.
doi: 10.1109/TMECH.2012.2237179
22 Sun Y , Jiang ZL , Qi XZ , et al. Robot-assisted decompressive laminectomy planning based on 3D medical image[J]. IEEE Access, 2018, 6, 22557- 22569.
doi: 10.1109/ACCESS.2018.2828641
23 Jiang ZL , Qi XZ , Sun Y , et al. Cutting depth monitoring based on milling force for robot-assisted laminectomy[J]. IEEE Trans Autom Sci Eng, 2020, 17 (1): 2- 14.
doi: 10.1109/TASE.2019.2920133
24 Li M , Qi XZ , Sun Y , et al. A stability and safety control method in robot-assisted decompressive laminectomy considering respiration and deformation of spine[J]. IEEE Trans Autom Sci Eng, 2023, 20 (1): 258- 270.
doi: 10.1109/TASE.2022.3147270
25 Xia GM, Yao B, Dai Y, et al. Cutting Depth Compensation Based on Milling Acoustic Signal for Robotic-Assisted Laminectomy[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Xi'an, IEEE, 2021: 12464-12469.
26 Xia GM , Jiang ZF , Zhang JX , et al. Sound pressure signal-based bone cutting depth control in robotic vertebral Lamina milling[J]. IEEE Sens J, 2022, 22 (11): 10708- 10718.
doi: 10.1109/JSEN.2022.3167664
27 Xia GM , Wang JG , Dai Y , et al. Vibration-based cutting depth control and angle adjustment of robotic curved bone milling[J]. IEEE Trans Instrum Meas, 2022, 71, 1- 10.
doi: 10.1109/TIM.2022.3191714
28 屈昊. 脊柱术区组织多模态信息感知及在机器人辅助手术中的实验研究[D]. 北京: 北京协和医学院, 2021.
29 李琨伦. 机器人辅助脊柱椎板减压手术影像交互与恒力切削控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
30 Smith AD , Chapin J , Birinyi PV , et al. Automated polyaxial screw placement using a commercial-robot-based, image-guided spine surgery system[J]. IEEE Trans Med Robotics Bionics, 2020, 3 (1): 74- 84.
31 Opfermann JD, Killeen BD, Bailey C, et al. Feasibility of a Cannula-mounted piezo robot for image-guided vertebral augmentation: toward a low cost, semi-autonomous approach[C]//2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE). Kragujevac, IEEE, 2021: 1-8.
32 Alambeigi F , Wang Y , Sefati S , et al. A curved-drilling approach in core decompression of the femoral head osteonecrosis using a continuum manipulator[J]. IEEE Robotics Autom Lett, 2017, 2 (3): 1480- 1487.
doi: 10.1109/LRA.2017.2668469
33 Kim S , Shim S , Ji D , et al. Wave-shaped notched compliant joint with high rigidity[J]. IEEE Robotics Autom Lett, 2022, 7 (4): 10168- 10175.
doi: 10.1109/LRA.2022.3192607
34 Wang Y , Yip HW , Zheng H , et al. Design and experimental validation of a miniaturized robotic tendon-driven articulated surgical drill for enhancing distal dexterity in minimally invasive spine fusion[J]. IEEE/ASME Trans Mechatron, 2021, 26 (4): 1858- 1866.
doi: 10.1109/TMECH.2021.3077706
35 Wang Y , Zheng H , Taylor RH , et al. A handheld steerable surgical drill with a novel miniaturized articulated joint module for dexterous confined-space bone work[J]. IEEE Trans Biomed Eng, 2022, 69 (9): 2926- 2934.
doi: 10.1109/TBME.2022.3157818
36 Qi XZ , Meng J , Li M , et al. An automatic path planning method of pedicle screw placement based on preoperative CT images[J]. IEEE Trans Med Robotics Bionics, 2022, 4 (2): 403- 413.
doi: 10.1109/TMRB.2022.3155288
[1] Xinyu LIU,Donglai LI,Wenlong ZHAO,Zheng WANG,Chao LI,Lianlei WANG,Suomao YUAN,Yonghao TIAN. Robotics/navigation-assisted pedicle screw implantation in spinal deformity correction surgery [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 21-28.
[2] GUO Yongyuan, SUN Houyi, ZHANG Yuankai, YAN Tingbin, LIU Peilai, JIA Yuhua. Learning curve of domestic “Skywalker” robotic-assisted total knee arthroplasty [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 115-120.
[3] LI Chao, SUN Xiaogang, LI Hao, TIAN Yonghao, YUAN Suomao, LIU Xinyu, WANG Lianlei. Clinical application of robotic-assisted navigation based on 3D C-arm in 44 cases of scoliosis surgery [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 107-114.
[4] LIU Yajun, YUAN Qiang, WU Jingye, HAN Xiaoguang, LANG Zhao, ZHANG Yong. Preliminary exploration of automatic planning of lumbar pedicle screws based on cone-beam CT in 130 cases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 80-89.
[5] Yajun LIU,Zhao LANG,Anyi GUO,Wenyong LIU. Progresses and trends of intelligent technologies in orthopedic shock wave therapy [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 7-13.
[6] WANG Zheng, SUN Xiaogang, LI Chao, WANG Lianlei, LI Donglai, YUAN Suomao, TIAN Yonghao, LIU Xinyu. Comparison of robot-assisted minimally invasive and freehand open transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: a 2-year follow-up [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 97-106.
[7] Hua QIAO,Huiwu LI. Application status and research progress of knee arthroplasty surgical robot [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 29-36.
[8] LI Xi, WANG Bingxiang, LI Na, CAO Lina, LI Aihua, GUAN Xiao, ZHANG Zhimian. Effects of lower limb exoskeleton robot rehabilitation training on lower limb motion of hemiplegic patients after stroke [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 121-126.
[9] KUANG Fengxia, ZHAO Xiaohong, HAN Baojia, GAO Chengjie. Optimal anesthesia depth with propofol closed-loop administration to effectively inhibit surgical stress response in patients undergoing robot-assisted radical thyroidectomy via bilateral axillo-breast approach [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 81-86.
[10] Hui TIAN,Wenbo YI,Shuhai LI. Da Vinci robotic resection of esophageal cancer in Qilu Hospital [J]. Journal of Shandong University (Health Sciences), 2022, 60(11): 28-32.
[11] Wei ZHANG,Wenhao TAN,Yibin LI. Locmotion control of quadruped robot based on deep reinforcement learning: review and prospect [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 61-66.
[12] DING Jinyong, XU Jixi, TAN Chengshuang, LIU Juncheng, LI Mingbo, XIE Weixing, REN Dongcheng. Finite element evaluation of different facet tropism criteria [J]. Journal of Shandong University (Health Sciences), 2020, 58(6): 97-103.
[13] WANG Gang, PAN Huafeng, LIU Jiang, WANG Haifeng, CHENG Wei, JIANG Zhiwei. Application of Da Vinci Xi robotic surgical system in full robotic radical distal gastrectomy [J]. Journal of Shandong University (Health Sciences), 2020, 58(5): 51-55.
[14] QIAO Yu, CUI Liangliang, LI Shuai, WANG Feng, RUAN Shiman, JING Yiming, LIU Chong. Research and development of intelligent question answering robot system: a case study of its application in response to COVID-19 epidemic in Jinan City [J]. Journal of Shandong University (Health Sciences), 2020, 58(4): 17-22.
[15] ZHAO Jian, HAN Xiaoling,WANG Gang, LIU Jiang, ZHOU Jiahui, WANG Haifeng, JIANG Zhiwei, LI Jieshou. Effects of multimodal analgesia on the intestinal function of 45 patients who received robotic distal gastrectomy [J]. Journal of Shandong University (Health Sciences), 2019, 57(9): 43-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 1 -6 .
[2] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 7 -14 .
[3] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 24 -31 .
[4] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 53 -59 .
[5] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 67 -71 .
[6] XU Jixi, CHEN Weijian. Diffuse midline glioma with H3 K27M mutation in the spinal cord: a case report[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 96 -101 .
[7] JI Yongjuan, XIANG Zini, KUANG Guifang. A path analysis on the influence of burnout on quality of life among staff in two tertiary hospitals in Qingdao[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 102 -107 .
[8] LYU Longfei, LI Lin, LI Shuhai, QI Lei, LU Ming, CHENG Chuanle, TIAN Hui. Application of laparoscopic fine needle catheter jejunostomy in minimally invasive McKeown resection of esophageal cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 77 -81 .
[9] ZHANG Juan, ZHANG Lujia, XIAO Wei, LI Shunping. Influencing factors of perceived stress and job retention in national standardized training for resident doctors[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 108 -114 .
[10] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 15 -23 .