Journal of Shandong University (Health Sciences) ›› 2023, Vol. 61 ›› Issue (3): 29-36.doi: 10.6040/j.issn.1671-7554.0.2022.1470

• Expert Overview • Previous Articles     Next Articles

Application status and research progress of knee arthroplasty surgical robot

Hua QIAO,Huiwu LI*()   

  1. Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
  • Received:2022-12-29 Online:2023-03-10 Published:2023-03-24
  • Contact: Huiwu LI E-mail:huiwu1223@163.com

Abstract:

As a new technology, surgical robots can significantly improve the accuracy, efficiency and safety of knee arthroplasty. However, owing to the wide variety of surgical robots in the market, there is still no comprehensive evaluation of the application status and research progress. This article firstly introduces surgical robots used in the unicondylar knee arthroplasty, patellofemoral arthroplasty, and total knee arthroplasty, then analyzes their advantages and disadvantages, and finally discusses the shortcomings and proposes possible solutions, hoping to provide reference for the future development.

Key words: Knee arthroplasty, Surgical robot, Minimally invasive surgery, Clinical outcome

CLC Number: 

  • R687.1
1 Jacofsky DJ , Allen M . Robotics in arthroplasty: a comprehensive review[J]. J Arthroplasty, 2016, 31 (10): 2353- 2363.
doi: 10.1016/j.arth.2016.05.026
2 DiGioia AM 3rd , Jaramaz B , Colgan BD . Computer assisted orthopaedic surgery. Image guided and robotic assistive technologies[J]. Clin Orthop Relat Res, 1998, (354): 8- 16.
3 孙茂淋, 杨柳, 何锐. 手术机器人在人工全膝关节置换术中的应用及研究进展[J]. 中国修复重建外科杂志, 2021, 35 (7): 913- 917.
SUN Maolin , YANG Liu , HE Rui . Application and research progress of robotic-arm in total knee arthroplasty[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35 (7): 913- 917.
4 Antonios JK , Korber S , Sivasundaram L , et al. Trends in computer navigation and robotic assistance for total knee arthroplasty in the United States: an analysis of patient and hospital factors[J]. Arthroplast Today, 2019, 5 (1): 88- 95.
doi: 10.1016/j.artd.2019.01.002
5 Deckey DG , Rosenow CS , Verhey JT , et al. Robotic-assisted total knee arthroplasty improves accuracy and precision compared to conventional techniques[J]. Bone Joint J, 2021, 103-B (6 Supple A): 74- 80.
doi: 10.1302/0301-620X.103B6.BJJ-2020-2003.R1
6 Xia R , Zhai Z , Zhang J , et al. Verification and clinical translation of a newly designed "Skywalker" robot for total knee arthroplasty: a prospective clinical study[J]. J Orthop Translat, 2021, 29, 143- 151.
doi: 10.1016/j.jot.2021.05.006
7 Jeon SW , Kim KI , Song SJ . Robot-assisted total knee arthroplasty does not improve long-term clinical and radiologic outcomes[J]. J Arthroplasty, 2019, 34 (8): 1656- 1661.
doi: 10.1016/j.arth.2019.04.007
8 Liddle AD , Pandit H , Judge A , et al. Patient-reported outcomes after total and unicompartmental knee arthroplasty: a study of 14, 076 matched patients from the National Joint Registry for England and Wales[J]. Bone Joint J, 2015, 97-B (6): 793- 801.
doi: 10.1302/0301-620X.97B6.35155
9 Yen PL , Davies BL . Active constraint control for image-guided robotic surgery[J]. Proc Inst Mech Eng H, 2010, 224 (5): 623- 631.
doi: 10.1243/09544119JEIM606
10 Rodriguez F , Harris S , Jakopec M , et al. Robotic clinical trials of uni-condylar arthroplasty[J]. Int J Med Robot, 2005, 1 (4): 20- 28.
doi: 10.1002/rcs.52
11 张帅, 孔祥朋, 柴伟. 2021年度关节外科手术机器人临床应用盘点[J]. 骨科, 2022, 13 (6): 562- 567.
doi: 10.3969/j.issn.1674-8573.2022.06.018
12 Pearle AD , O'Loughlin PF , Kendoff DO . Robot-assisted unicompartmental knee arthroplasty[J]. J Arthroplasty, 2010, 25 (2): 230- 237.
doi: 10.1016/j.arth.2008.09.024
13 Dunbar NJ , Roche MW , Park BH , et al. Accuracy of dynamic tactile-guided unicompartmental knee arthroplasty[J]. J Arthroplasty, 2012, 27 (5): 803- 808. e1.
doi: 10.1016/j.arth.2011.09.021
14 Lonner JH , John TK , Conditt MA . Robotic arm-assisted UKA improves tibial component alignment: a pilot study[J]. Clin Orthop Relat Res, 2010, 468 (1): 141- 146.
doi: 10.1007/s11999-009-0977-5
15 Mofidi A , Plate JF , Lu B , et al. Assessment of accuracy of robotically assisted unicompartmental arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22 (8): 1918- 1925.
doi: 10.1007/s00167-014-2969-6
16 Plate JF , Mofidi A , Mannava S , et al. Achieving accurate ligament balancing using robotic-assisted unicompartmental knee arthroplasty[J]. Adv Orthop, 2013, 2013, 837167.
doi: 10.1155/2013/837167
17 Dretakis K , Igoumenou VG . Outcomes of robotic-arm-assisted medial unicompartmental knee arthroplasty: minimum 3-year follow-up[J]. Eur J Orthop Surg Traumatol, 2019, 29 (6): 1305- 1311.
doi: 10.1007/s00590-019-02424-4
18 Blyth MJG , Anthony I , Rowe P , et al. Robotic arm-assisted conventional unicompartmental knee arthroplasty: exploratory secondary analysis of a randomised controlled trial[J]. Bone Joint Res, 2017, 6 (11): 631- 639.
doi: 10.1302/2046-3758.611.BJR-2017-0060.R1
19 Smith JR , Riches PE , Rowe PJ . Accuracy of a freehand sculpting tool for unicondylar knee replacement[J]. Int J Med Robot, 2014, 10 (2): 162- 169.
doi: 10.1002/rcs.1522
20 Batailler C , White N , Ranaldi FM , et al. Improved implant position and lower revision rate with robotic-assisted unicompartmental knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27 (4): 1232- 1240.
doi: 10.1007/s00167-018-5081-5
21 Battenberg AK , Netravali NA , Lonner JH . A novel handheld robotic-assisted system for unicompartmental knee arthroplasty: surgical technique and early survivorship[J]. J Robot Surg, 2020, 14 (1): 55- 60.
doi: 10.1007/s11701-018-00907-w
22 Clement ND , Al-Zibari M , Afzal I , et al. A systematic review of imageless hand-held robotic-assisted knee arthroplasty: learning curve, accuracy, functional outcome and survivorship[J]. EFORT Open Rev, 2020, 5 (5): 319- 326.
doi: 10.1302/2058-5241.5.190065
23 Boylan M , Suchman K , Vigdorchik J , et al. Technology-assisted hip and knee arthroplasties: an analysis of utilization trends[J]. J Arthroplasty, 2018, 33 (4): 1019- 1023.
doi: 10.1016/j.arth.2017.11.033
24 Selvaratnam V , Cattell A , Eyres KS , et al. Robotic-assisted patellofemoral replacement-correlation of preoperative planning with intraoperative implant position and early clinical experience: a minimum 2-year follow-up[J]. J Knee Surg, 2022, 35 (7): 731- 738.
doi: 10.1055/s-0040-1716848
25 Wolf A , Jaramaz B , Lisien B , et al. MBARS: mini bone-attached robotic system for joint arthroplasty[J]. Int J Med Robot, 2005, 1 (2): 101- 121.
doi: 10.1002/rcs.20
26 Song S , Mor A , Jaramaz B . HyBAR: hybrid bone-attached robot for joint arthroplasty[J]. Int J Med Robot, 2009, 5 (2): 223- 231.
doi: 10.1002/rcs.254
27 Masri BA , McGraw RW , Beauchamp CP . Robotrac in total knee arthroplasty. The silent assistant[J]. Am J Knee Surg, 1995, 8 (1): 20- 23.
28 Spencer EH . The ROBODOC clinical trial: a robotic assistant for total hip arthroplasty[J]. Orthop Nurs, 1996, 15 (1): 9- 14.
29 Liow MHL , Xia Z , Wong MK , et al. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study[J]. J Arthroplasty, 2014, 29 (12): 2373- 2377.
doi: 10.1016/j.arth.2013.12.010
30 Liow MHL , Goh GS-H , Wong MK , et al. Robotic-assisted total knee arthroplasty may lead to improvement in quality-of-life measures: a 2-year follow-up of a prospective randomized trial[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25 (9): 2942- 2951.
doi: 10.1007/s00167-016-4076-3
31 Subramanian P , Wainwright TW , Bahadori S , et al. A review of the evolution of robotic-assisted total hip arthroplasty[J]. Hip Int, 2019, 29 (3): 232- 238.
doi: 10.1177/1120700019828286
32 Marchand RC , Sodhi N , Khlopas A , et al. Coronal correction for severe deformity using robotic-assisted total knee arthroplasty[J]. J Knee Surg, 2018, 31 (1): 2- 5.
doi: 10.1055/s-0037-1608840
33 Marchand RC , Sodhi N , Khlopas A , et al. Patient satisfaction outcomes after robotic arm-assisted total knee arthroplasty: a short-term evaluation[J]. J Knee Surg, 2017, 30 (9): 849- 853.
doi: 10.1055/s-0037-1607450
34 Marchand RC , Sodhi N , Anis HK , et al. One-year patient outcomes for robotic-arm-assisted versus manual total knee arthroplasty[J]. J Knee Surg, 2019, 32 (11): 1063- 1068.
doi: 10.1055/s-0039-1683977
35 Mitchell J , Wang J , Bukowski B , et al. Relative clinical outcomes comparing manual and robotic-assisted total knee arthroplasty at minimum 1-year follow-up[J]. HSS J, 2021, 17 (3): 267- 273.
doi: 10.1177/15563316211028568
36 李治非, 杨阳, 苏月, 等. 我国外科手术机器人研究应用现状与思考[J]. 中国医学装备, 2019, 16 (11): 177- 181.
doi: 10.3969/J.ISSN.1672-8270.2019.11.046
LI Zhifei , YANG Yang , SU Yue , et al. Current status and thinking of research and application of surgical robots in China[J]. China Medical Equipment, 2019, 16 (11): 177- 181.
doi: 10.3969/J.ISSN.1672-8270.2019.11.046
37 赵子健. 机器人辅助全膝关节置换手术系统的研究及其在临床前的应用[D]. 上海: 上海交通大学, 2009.
38 夏润之, 童志成, 张经纬, 等. 国产"鸿鹄"膝关节置换手术机器人的早期临床研究[J]. 实用骨科杂志, 2021, 27 (2): 108- 113.108-113, 117
XIA Runzhi , TONG Zhicheng , ZHANG Jingwei , et al. Early clinical study of domestic "Skywalker" surgical robot for knee arthroplasty[J]. Journal of Practical Orthopaedics, 2021, 27 (2): 108- 113.108-113, 117
39 Chen X , Li Z , Zhang X , et al. A new robotically assisted system for total knee arthroplasty: a sheep model study[J]. Int J Med Robot, 2021, 17 (4): e2264.
40 Li Z , Chen X , Zhang X , et al. Better precision of a new robotically assisted system for total knee arthroplasty compared to conventional techniques: a sawbone model study[J]. Int J Med Robot, 2021, 17 (4): e2263.
41 Li Z , Chen X , Wang X , et al. HURWA robotic-assisted total knee arthroplasty improves component positioning and alignment-a prospective randomized and multicenter study[J]. J Orthop Translat, 2022, 33, 31- 40.
doi: 10.1016/j.jot.2021.12.004
42 柴伟, 谢杰, 张晓岗, 等. 国产全膝关节置换术辅助机器人系统的尸体实验研究[J]. 中国修复重建外科杂志, 2021, 35 (4): 409- 413.
CHAI Wei , XIE Jie , ZHANG Xiaogang , et al. A cadaveric experimental study on domestic robot-assisted total knee arthroplasty[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35 (4): 409- 413.
43 柴伟, 谢杰, 张晓岗, 等. 国产全膝关节置换术辅助机器人系统动物实验研究[J]. 中国修复重建外科杂志, 2020, 34 (11): 1376- 1381.
CHAI Wei , XIE Jie , ZHANG Xiaogang , et al. An animal experimental study on domestic robot-assisted total knee arthroplasty[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2020, 34 (11): 1376- 1381.
44 袁铭成, 石小军, 苏强, 等. 国产机器人辅助人工全膝关节置换术近期疗效的前瞻性随机对照研究[J]. 中国修复重建外科杂志, 2021, 35 (10): 1251- 1258.
YUAN Mingcheng , SHI Xiaojun , SU Qiang , et al. A prospective randomized controlled trial on the short-term effectiveness of domestic robot-assisted total knee arthroplasty[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35 (10): 1251- 1258.
45 Sires JD , Craik JD , Wilson CJ . Accuracy of bone resection in MAKO total knee robotic-assisted surgery[J]. J Knee Surg, 2021, 34 (7): 745- 748.
doi: 10.1055/s-0039-1700570
46 Song EK , Seon JK , Yim JH , et al. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA[J]. Clin Orthop Relat Res, 2013, 471 (1): 118- 126.
doi: 10.1007/s11999-012-2407-3
47 Khlopas A , Chughtai M , Hampp EL , et al. Robotic-arm assisted total knee arthroplasty demonstrated soft tissue protection[J]. Surg Technol Int, 2017, 30, 441- 446.
48 Kayani B , Konan S , Pietrzak JRT , et al. Iatrogenic bone and soft tissue trauma in robotic-arm assisted total knee arthroplasty compared with conventional jig-based total knee arthroplasty: a prospective cohort study and validation of a new classification system[J]. J Arthroplasty, 2018, 33 (8): 2496- 2501.
doi: 10.1016/j.arth.2018.03.042
49 Agarwal N , To K , McDonnell S , et al. Clinical and radiological outcomes in robotic-assisted total knee arthroplasty: a systematic review and Meta-analysis[J]. J Arthroplasty, 2020, 35 (11): 3393- 3409. e2.
doi: 10.1016/j.arth.2020.03.005
50 Kayani B , Konan S , Tahmassebi J , et al. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty: a prospective cohort study[J]. Bone Joint J, 2018, 100-B (7): 930- 937.
51 Smith AF , Eccles CJ , Bhimani SJ , et al. Improved patient satisfaction following robotic-assisted total knee arthroplasty[J]. J Knee Surg, 2021, 34 (7): 730- 738.
52 Pugely AJ , Martin CT , Gao Y , et al. The incidence of and risk factors for 30-day surgical site infections following primary and revision total joint arthroplasty[J]. J Arthroplasty, 2015, 30 (9 Suppl): 47- 50.
53 Siebert W , Mai S , Kober R , et al. Technique and first clinical results of robot-assisted total knee replacement[J]. Knee, 2002, 9 (3): 173- 180.
54 Sodhi N , Khlopas A , Piuzzi NS , et al. The learning curve associated with robotic total knee arthroplasty[J]. J Knee Surg, 2018, 31 (1): 17- 21.
55 Bargar WL . Robots in orthopaedic surgery: past, present, and future[J]. Clin Orthop Relat Res, 2007, 463, 31- 36.
56 Moschetti WE , Konopka JF , Rubash HE , et al. Can robot-assisted unicompartmental knee arthroplasty be cost-effective? A markov decision analysis[J]. J Arthroplasty, 2016, 31 (4): 759- 765.
57 Cavinatto L , Bronson MJ , Chen DD , et al. Robotic-assisted versus standard unicompartmental knee arthroplasty-evaluation of manuscript conflict of interests, funding, scientific quality and bibliometrics[J]. Int Orthop, 2019, 43 (8): 1865- 1871.
58 Jeon SW , Kim KI , Song SJ . Robot-assisted total knee arthroplasty does not improve long-term clinical and radiologic outcomes[J]. J Arthroplasty, 2019, 34 (8): 1656- 1661.
59 Kim YH , Yoon SH , Sung H , et al. Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA? A randomized, controlled trial[J]. Clin Orthop Relat Res, 2020, 478 (2): 226- 275.
60 Khlopas A , Sodhi N , Sultan AA , et al. Robotic arm-assisted total knee arthroplasty[J]. J Arthroplasty, 2018, 33 (7): 2002- 2006.
61 Zhang J , Ndou WS , Ng N , et al. Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: a systematic review and meta-analysis[J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30 (8): 2677- 2695.
[1] GUO Yongyuan, SUN Houyi, ZHANG Yuankai, YAN Tingbin, LIU Peilai, JIA Yuhua. Learning curve of domestic “Skywalker” robotic-assisted total knee arthroplasty [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 115-120.
[2] LIU Yajun, YUAN Qiang, WU Jingye, HAN Xiaoguang, LANG Zhao, ZHANG Yong. Preliminary exploration of automatic planning of lumbar pedicle screws based on cone-beam CT in 130 cases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 80-89.
[3] LIN Junxin, LIU Yujiang, LIU Peilai, WAN Lianping, ZHANG Peng, DU Jianchun, LIU Zemiao, KONG Jie, GAO Shengtao. Two cases of periprosthetic tibial plateau fracture after fixed-bearing unicompartmental knee arthroplasty [J]. Journal of Shandong University (Health Sciences), 2022, 60(3): 96-99.
[4] Guowei CHE. It is necessary for enhanced recovery after surgery to keep pace with the times [J]. Journal of Shandong University (Health Sciences), 2022, 60(11): 17-22.
[5] LI Mingbo, HUANG Yanbo, REN Dongcheng, LIU Juncheng, TAN Chengshuang, XU Jixi, DING Jinyong. Afinite element analysis of three different fusion methods of lumbar internal fixation [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 55-64.
[6] ZHU Xuli, ZHOU Liang, WANG Yue, SUN Qingyun, CAO Mingya, DU Yuanjie, CAO Jinfeng, ZHAO Zhiming, HAO Guimin. Correlation analysis of freezing methods with different sperm sources and pregnancy outcomes [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 86-93.
[7] WANG Gang, JIANG Zhiwei,PAN Huafeng. Review and development of abdominoperineal resection [J]. Journal of Shandong University (Health Sciences), 2020, 58(5): 6-10.
[8] ZHANG Chunyun, HE Wei, JIANG Bin, WEI Zhaosheng, WANG Zhigang. Safety and efficacy of neuronavigation-guided minimally invasive aspiration for 17 patients of supratentorial intracerebral hemorrhage with hernia [J]. Journal of Shandong University (Health Sciences), 2020, 58(2): 44-48.
[9] CAO Mingya, ZHAO Hanjie, FENG Tengfei, JIA Rui, ZHAO Zhiming, HAO Guimin. Effect of fetal reduction in early pregnancy on perinatal mothers and infants after embryo transfer [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 65-70.
[10] LIU Huashui, DUAN Shengjun, ZHAO Guohui, ZHANG Zhen, ZHU Liming, WANG Xueguang, JIA Fengshuang, LIU Shidong, LIU Mincen, LI Ming, CHEN Hua. Robot-assisted minimally invasive treatment of pelvic ring injuries: a clinical analysis of 108 cases [J]. Journal of Shandong University (Health Sciences), 2019, 57(11): 52-59.
[11] WANG Weijun, ZHOU Ningquan, WANG Chao. Treatment of 68 cases of moderate volume of hypertensive intracerebral hemorrhage with free hand technique of minimally invasive puncture of the soft channel under CT orientation [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(5): 61-65.
[12] ZHOU Chuibao, MA Liang, LI Ming, ZHANG Yuankai. Reconstruction of proximal tibial bone defect during primary total knee arthroplasty and its clinical efficacy [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(6): 35-38.
[13] ZHAO Heng, YIN Qingfeng, LIU Wenguang, LIU Shenghou, XIAO Shipeng, WANG Shaojin. Application of a novel barbed suture in wound closure of hip and knee replacement [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(8): 53-56.
[14] HUANG Chuanwang, Salim Jeddo, ZHANG Yuankai, LI Deqiang, LIU Peilai, LI Ming. Use of metal block in total knee arthroplasty with tibial bone defect [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(6): 90-93.
[15] TIAN Min, YUAN Qian, CUI Yuan-xiao, ZHANG Qing-hua, TANG Qian-qian . Dynamic fluctuation of fibrinolytic activity in patients withmini-invasive hematoma aspiration [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(10): 73-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 1 -6 .
[2] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 32 -37 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 15 -23 .
[4] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 38 -46 .
[5] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 67 -71 .
[6] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 60 -66 .
[7] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 47 -52 .
[8] GUO Zhihua, ZHAO Daqing, XING Yuan, WANG Wei, LIANG Leping, YANG Jing, ZHAO Qianqian. Single-stage end-to-end anastomosis in the management of severe cervical tracheal stenosis[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 72 -76 .
[9] LYU Longfei, LI Lin, LI Shuhai, QI Lei, LU Ming, CHENG Chuanle, TIAN Hui. Application of laparoscopic fine needle catheter jejunostomy in minimally invasive McKeown resection of esophageal cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 77 -81 .
[10] ZHANG Juan, ZHANG Lujia, XIAO Wei, LI Shunping. Influencing factors of perceived stress and job retention in national standardized training for resident doctors[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 108 -114 .