山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (9): 77-83.doi: 10.6040/j.issn.1671-7554.0.2025.0019
• 综述 • 上一篇
李习平1,邱梅2,黄瑞峰2,林慧慧2,刘丝丝2,罗鸿莹2,王宇月2,王敏2,杨晓彤3
LI Xiping1, QIU Mei2, HUANG Ruifeng2, LIN Huihui2, LIU Sisi2, LUO Hongying2, WANG Yuyue2, WANG Min2, YANG Xiaotong3
摘要: 动脉粥样硬化(atherosclerosis, AS)作为心脑血管疾病的主要病理基础,已成为重大公共卫生挑战。现有治疗药物在调控脂质代谢紊乱与炎症反应失衡的协同效应方面存在局限,促使研究者转向具有多靶点调控特性的天然药物。黄连素作为代表性的天然化合物,通过对脂质的“沉积抑制-代谢清除”双重机制发挥抗AS作用。本文论述了黄连素在AS病理进程中调控脂质-炎症网络失衡的作用机制与分子特征,并评述了其临床转化潜力,旨在为突破现有单靶点药物疗效瓶颈提供理论依据和策略指导。
中图分类号:
| [1] 吴虹, 张正铎, 唐延金, 等. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报(医学版), 2022, 60(8): 6-13. WU Hong, ZHANG Zhengduo, TANG Yanjin, et al. Potential intervention effects of 5-methyltetrahydrofolate on atherosclerosis in rats[J]. Journal of Shandong University(Health Sciences), 2022, 60(8): 6-13. [2] Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis[J]. Nature, 2011, 473(7347): 317-325. [3] Liu HX, Zhang YC, Zhao YY, et al. Research progress and clinical translation potential of coronary atherosclerosis diagnostic markers from a genomic perspective[J]. Genes(Basel), 2025, 16(1): 98. doi: 10.3390/genes16010098 [4] Xia Y, Liu H, Zhu R, et al. Analysis of non-cardiogenic young minor ischemic stroke patients risk factors in Chinese Han population[J]. Med Sci Monit, 2025, 31: e946146. doi: 10.12659/MSM.946146 [5] Masoumi-Ardakani Y, Eghbalian M, Fallah H, et al. Exploring serum miR-33b as a novel diagnostic marker for hypercholesterolemia and obesity: insights from a pilot case-control study[J]. BMC Endocr Disord, 2025, 25(1): 27. doi: 10.1186/s12902-025-01849-9 [6] Nehaoua A, Gasmi A, Benahmed AG, et al. Lipid biochemistry and its role in human diseases[J]. Curr Med Chem, 2025. doi: 10.2174/0109298673351452241220071215 [7] Gong ZH, Yang HX, Gao L, et al. Mechanisms of wogonoside in the treatment of atherosclerosis based on network pharmacology, molecular docking, and experimental validation[J]. BMC Complement Med Ther, 2025, 25(1): 28. doi: 10.1186/s12906-025-04760-x [8] Shi Z, Huang J, Chen C, et al. Lipid nanoparticles encapsulating curcumin for imaging and stabilization of vulnerable atherosclerotic plaques via phagocytic “eat-me” signals[J]. J Control Release, 2024, 373: 265-276. doi: 10.1016/j.jconrel.2024.07.027 [9] Yang AN, Zhang HW, Zhang HP, et al. Pitavastatin and resveratrol bio-nano complexes against hyperhomocysteinemia-induced atherosclerosis via blocking ferroptosis-related lipid deposition[J]. J Control Release, 2025, 381: 113598. doi: 10.1016/j.jconrel.2025.113598 [10] Zhang LH, Wang HX, Wang ZS, et al. Resveratrol promotes cholesterol efflux from dendritic cells and controls costimulation and T-cell activation in high-fat and lipopolysaccharide-driven atherosclerotic mice[J]. Front Cardiovasc Med, 2024, 11: 1450898. doi: 10.3389/fcvm.2024.1450898 [11] Du JD, Zhu Y, Yang XH, et al. Berberine attenuates obesity-induced insulin resistance by inhibiting miR-27a secretion[J]. Diabet Med, 2024, 41(7): e15319. doi: 10.1111/dme.15319 [12] Ming Y, He XY, Zhao ZX, et al. Nanocarrier-assisted delivery of berberine promotes diabetic alveolar bone regeneration by scavenging ROS and improving mitochondrial dysfunction[J]. Int J Nanomedicine, 2024, 19: 10263-10282. doi: 10.2147/IJN.S475320 [13] Wei GL, Huang N, Li MY, et al. Tetrahydroberberine alleviates high-fat diet-induced hyperlipidemia in mice via augmenting lipoprotein assembly-induced clearance of low-density lipoprotein and intermediate-density lipoprotein[J]. Eur J Pharmacol, 2024, 968: 176433. doi: 10.1016/j.ejphar.2024.176433 [14] Wang KX, Li ZX, Zhang WC, et al. The study on synthesis and vitro hypolipidemic activity of novel berberine derivatives nitric oxide donors[J]. Fitoterapia, 2024, 176: 105964. doi: 10.1016/j.fitote.2024.105964 [15] Ding LN, Xia JJ, Wang H, et al. Berberine improves glucose and lipid metabolism in obese mice through the reduction of IRE1/GSK-3β axis-mediated inflammation[J]. Endocr Metab Immune Disord Drug Targets, 2025. doi: 10.2174/0118715303319434241113161606 [16] Kong Y, Yi YJ, Liu XQ, et al. Discovery and structural optimization of 9-O-phenylsulfonyl-berberines as new lipid-lowering agents[J]. Bioorg Chem, 2022, 121: 105665. doi: 10.1016/j.bioorg.2022.105665 [17] Zhao Y, Yang YY, Yang BL, et al. Efficacy and safety of berberine for dyslipidemia: study protocol for a randomized double-blind placebo-controlled trial[J]. Trials, 2021, 22(1): 85. doi: 10.1186/s13063-021-05028-8 [18] Wu CM, Zhao Y, Zhang YY, et al. Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine(BBR)and facilitates to predict BBR’s cholesterol-decreasing efficacy in patients[J]. J Adv Res, 2021, 37: 197-208. doi: 10.1016/j.jare.2021.07.011 [19] Hu WH, Feng H, Liu Y, et al. Recent advances in immunotherapy targeting CETP proteins for atherosclerosis prevention[J]. Hum Vaccin Immunother, 2025, 21(1): 2462466. doi: 10.1080/21645515.2025.2462466 [20] Winnie Ho TW, Wang C, Lee WL. LDL transcytosis passes through the trans-Golgi network and requires Rab10[J]. J Lipid Res, 2025:100893. doi: 10.1016/j.jlr.2025.100893 [21] Borén J, Taskinen MR, Packard CJ. Biosynthesis and metabolism of ApoB-containing lipoproteins[J]. Annu Rev Nutr, 2024, 44(1): 179-204. [22] Matsuo M, Takaoka S, Nakayama K, et al. Fatty acids from cheese stimulate cholesterol efflux by ATP-binding cassette transporters[J]. Biosci Biotechnol Biochem, 2025, 89(4): 573-585. [23] Liao WQ, Li Y, Zhao HY, et al. The Lian-Dou-Qing-Mai Formula activates the PPARγ-LXRα-ABCA1/ABCG1 pathway by regulating IL-10, leading to the promotion of cholesterol efflux and a reduction in atherosclerotic plaques[J]. Histol Histopathol, 2025, 40(4): 585-596. [24] Zhang ST, Du JJ, Wang P, et al. Association between estimated small dense low-density lipoprotein-cholesterol(sdLDL-C)and atherosclerotic cardiovascular disease risk[J]. Arq Bras Cardiol, 2025, 122(1): e20240265. doi: 10.36660/abc.20240265 [25] Zhang SX, Sun L, Xu XY, et al. Efficacy and safety of inclisiran versus PCSK9 inhibitor versus statin plus ezetimibe therapy in hyperlipidemia: a systematic review and network meta-analysis[J]. BMC Cardiovasc Disord, 2024, 24(1): 629. doi: 10.1186/s12872-024-04321-z [26] Ginsberg HN, Packard CJ, Chapman MJ, et al. Trigly-ceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European atherosclerosis society[J]. Eur Heart J, 2021, 42(47): 4791-4806. [27] Khoury E, Lauzière A, Raal FJ, et al. Atherosclerotic plaque regression in homozygous familial hypercholestero-laemia: a case report of a long-term lipid-lowering the-rapy involving LDL-receptor-independent mechanisms[J]. Eur Heart J Case Rep, 2023, 7(1): ytad029. doi: 10.1093/ehjcr/ytad029 [28] Dai W, Zhang H, Lund H, et al. Intracellular tPA-PAI-1 interaction determines VLDL assembly in hepatocytes[J]. Science, 2023, 381(6661): eadh5207. doi: 10.1126/science.adh5207 [29] Munkhsaikhan U, Ait-Aissa K, Sahyoun AM, et al. Lomitapide: navigating cardiovascular challenges with innovative therapies[J]. Mol Biol Rep, 2024, 51(1): 1082. doi: 10.1007/s11033-024-10003-y [30] Goldstein JL, Brown MS. The LDL receptor and the regulation of cellular cholesterol metabolism[J]. J Cell Sci Suppl, 1985, 3: 131-137. doi: 10.1242/jcs.1985.supplement_3.13 [31] Rosenson RS, Jr HBB, Davidson WS, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport[J]. Circulation, 2012, 125(15): 1905-1919. [32] Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice[J]. J Clin Invest, 2000, 105(8): 1049-1056. [33] Libby P, Hansson GK. Inflammation and immunity in diseases of the arterial tree: players and layers[J]. Circ Res, 2015, 116(2): 307-311. [34] Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders[J]. Nature, 2017, 542(7640): 177-185. [35] Zhou X, Ren FY, Wei H, et al. Combination of ber-berine and evodiamine inhibits intestinal cholesterol absorption in high fat diet induced hyperlipidemic rats[J]. Lipids Health Dis, 2017, 16(1): 239. doi: 10.1186/s12944-017-0628-x [36] Cai YJ, Yang QN, Yu YQ, et al. Efficacy and underl-ying mechanisms of berberine against lipid metabolic diseases: a review[J]. Front Pharmacol, 2023, 14: 1283784. doi: 10.3389/fphar.2023.1283784 [37] Cao SJ, Zhou Y, Xu PX, et al. Berberine metabolites exhibit triglyceride-lowering effects via activation of AMP-activated protein kinase in Hep G2 cells[J]. J Ethnopharmacol, 2013, 149(2): 576-582. [38] Alruhaimi RS, Siddiq Abduh M, Ahmeda AF, et al. Berberine attenuates inflammation and oxidative stress and modulates lymphocyte E-NTPDase in acute hyperlipidemia[J]. Drug Dev Res, 2024, 85(2): e22166. doi: 10.1002/ddr.22166 [39] Chen C, Liu XC, Deng B. Protective effects of berberine on nonalcoholic fatty liver disease in db/db mice via AMPK/SIRT1 pathway activation[J]. Curr Med Sci, 2024, 44(5): 902-911. [40] Feng J, Xu R, Dou ZJ, et al. Tetrahydroberberrubine improves hyperlipidemia by activating the AMPK/SREBP2/PCSK9/LDL receptor signaling pathway[J]. Eur J Pharmacol, 2025, 989: 177228. doi: 10.1016/j.ejphar.2024.177228 [41] Cicero AFG, Fogacci F, Stoian AP, et al. Nutraceuticals in the management of dyslipidemia: which, when, and for whom? Could nutraceuticals help low-risk individuals with non-optimal lipid levels?[J]. Curr Atheroscler Rep, 2021, 23(10): 57. doi: 10.1007/s11883-021-00955-y [42] Tian Y, Cai JW, Gui W, et al. Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation[J]. Drug Metab Dispos, 2019, 47(2): 86-93. [43] Wang C, Yang YT, Chen JY, et al. Berberine protects against high-energy and low-protein diet-induced hepatic steatosis: modulation of gut microbiota and bile acid metabolism in laying hens[J]. Int J Mol Sci, 2023, 24(24): 17304. doi: 10.3390/ijms242417304 [44] Yang XJ, Liu F, Feng N, et al. Berberine attenuates cholesterol accumulation in macrophage foam cells by suppressing AP-1 activity and activation of the Nrf2/HO-1 pathway[J]. J Cardiovasc Pharmacol, 2020, 75(1): 45-53. [45] Song T, Chen WD. Berberine inhibited carotid atherosclerosis through PI3K/AKTmTOR signaling pathway[J]. Bioengineered, 2021, 12(1): 8135-8146. [46] Wang TT, Yu LL, Zheng JM, et al. Berberine inhibits ferroptosis and stabilizes atherosclerotic plaque through NRF2/SLC7A11/GPX4 pathway[J]. Chin J Integr Med, 2024, 30(10): 906-916. [47] Ma SR, Tong Q, Lin Y, et al. Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota[J]. Signal Transduct Target Ther, 2022, 7(1): 207. doi: 10.1038/s41392-022-01027-6 [48] Ma CY, Shi XY, Wu YR, et al. Berberine attenuates atherosclerotic lesions and hepatic steatosis in ApoE-/- mice by down-regulating PCSK9 via ERK1/2 pathway[J]. Ann Transl Med, 2021, 9(20): 1517. doi: 10.21037/atm-20-8106 [49] Fatahian A, Haftcheshmeh SM, Azhdari S, et al. Promising anti-atherosclerotic effect of berberine: evidence from in vitro, in vivo, and clinical studies[J]. Rev Physiol Biochem Pharmacol, 2020, 178: 83-110. doi: 10.1007/112_2020_42 [50] Yang LL, Zhu WY, Zhang XB, et al. Efficacy and safety of berberine for several cardiovascular diseases: a systematic review and meta-analysis of randomized controlled trials[J]. Phytomedicine, 2023, 112: 154716. doi: 10.1016/j.phymed.2023.154716 [51] Sharma S, Sharma D, Dhobi M, et al. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α[J]. Mol Cell Biochem, 2024, 479(3): 707-732. [52] Wu M, Yang SJ, Wang SZ, et al. Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE-/- mice[J]. Front Pharmacol, 2020, 11: 223. doi: 10.3389/fphar.2020.00223 [53] Wu SN, Zou MH. AMPK, mitochondrial function, and cardiovascular disease[J]. Int J Mol Sci, 2020, 21(14): 4987. doi: 10.3390/ijms21144987 [54] Yu MY, Alimujiang M, Hu LL, et al. Berberine alleviates lipid metabolism disorders via inhibition of mitochondrial complex I in gut and liver[J]. Int J Biol Sci, 2021, 17(7): 1693-1707. [55] Ilyas Z, Perna S, Al-Thawadi S, et al. The effect of berberine on weight loss in order to prevent obesity: a systematic review[J]. Biomed Pharmacother, 2020, 127: 110137. doi: 10.1016/j.biopha.2020.110137 [56] Cicero AFG, Fogacci F, Tocci G, et al. Three arms, double-blind, non-inferiority, randomized clinical study testing the lipid-lowering effect of a novel dietary supplement containing red yeast rice and artichoke extracts compared to Armolipid Plus® and placebo[J]. Arch Med Sci, 2023, 19(5): 1169-1179. |
| [1] | 杜艾家,张曼,陈鹤,王丽新,尚应殊. 微小RNA-1270靶向调控血管生成素样蛋白7抑制巨噬细胞炎症和脂质蓄积[J]. 山东大学学报 (医学版), 2025, 63(2): 1-9. |
| [2] | 吴彤,杨晶玉,林盪,徐婉茹,曾宇鋆. 基于孟德尔随机化方法探讨脂质和降脂药物与慢性阻塞性肺病的遗传关联[J]. 山东大学学报 (医学版), 2024, 62(5): 54-63. |
| [3] | 赵智博,满振涛,李伟. 胆固醇代谢在骨关节炎疾病中的作用及研究进展[J]. 山东大学学报 (医学版), 2024, 62(2): 1-9. |
| [4] | 郑荣慧,李攀,曹秀琴,贺瑞霞,陈民佳,陈海霞,杨志伟. SQSTM1蛋白在嗜肺军团菌感染RAW264.7细胞自噬中的作用机制[J]. 山东大学学报 (医学版), 2023, 61(6): 10-21. |
| [5] | 许天旗,常娜,张帅,李莎,矫秉轩,于鑫鑫,王锡明. 非酒精性脂肪肝识别基于CTA颈动脉高危斑块[J]. 山东大学学报 (医学版), 2023, 61(12): 36-43. |
| [6] | 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13. |
| [7] | 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45. |
| [8] | 赵美茹,朱迪,刘淋,管庆波,张栩. 简易胰岛素抵抗指标与698例2型糖尿病患者发生高尿酸血症风险的关联[J]. 山东大学学报 (医学版), 2022, 60(12): 44-51. |
| [9] | 谢佳莹,祁佳,宋铭,李育林,王迪,贾旭,张薇,钟明,尚嫄嫄. 血清蛋白质β-折叠水平与冠心病的相关性[J]. 山东大学学报 (医学版), 2022, 60(1): 21-26. |
| [10] | 张栌丹,丁晓玲,崔舒悦,程晨,魏福兰,丁刚. 牙周膜干细胞调节巨噬细胞功能的体外研究[J]. 山东大学学报 (医学版), 2021, 59(3): 35-40. |
| [11] | 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7. |
| [12] | 江勇,宋剑刚,朱大侠,刘礼剑. 柚皮素通过调控巨噬细胞NLRP3炎症小体活化对脓毒症致急性肺损伤的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 14-21. |
| [13] | 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31. |
| [14] | 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67-71. |
| [15] | 金海燕,张炎,马小莉,韩羽,赵蕙琛,刘元涛,张玉超. MiR-122与miR-33a在2型糖尿病合并冠心病患者中的表达[J]. 山东大学学报 (医学版), 2020, 58(3): 94-98. |
|
||