您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (2): 1-9.doi: 10.6040/j.issn.1671-7554.0.2024.0045

• 专家综述 •    

胆固醇代谢在骨关节炎疾病中的作用及研究进展

赵智博1,2,满振涛2,李伟1,2   

  1. 1.山东大学齐鲁医学院, 山东 济南 250012;2.山东第一医科大学附属省立医院关节外科, 山东 济南 250021
  • 发布日期:2024-03-29
  • 通讯作者: 李伟. E-mail:greatli2000@163.com
  • 基金资助:
    山东省重点研发计划(2020CXGC010502)

Role of cholesterol metabolism in osteoarthritis: a review of research progresses

ZHAO Zhibo1,2, MAN Zhentao2, LI Wei1,2   

  1. 1. Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Published:2024-03-29

摘要: 骨关节炎(osteoarthritis, OA)是一种与年龄相关的退行性疾病,长期以来一直与肥胖有关。有研究指出OA 可能是一种代谢性疾病,因为它不仅累及负重关节也累及非负重关节。新出现的证据表明OA中存在着异常的胆固醇代谢。异常的胆固醇代谢途径会伴随着产生一些促炎物质,这些物质对OA的发展至关重要。因此调节胆固醇异常代谢的药物可能在OA中具有巨大的治疗前景。现着重总结了胆固醇代谢在OA疾病中的作用和综合分子机制,提出多角度调控胆固醇代谢可能是临床治疗OA疾病的一种有前景的策略。

关键词: 骨关节炎, 代谢综合征, 胆固醇代谢异常, 氧化修饰低密度脂蛋白, 胆固醇代谢

Abstract: Osteoarthritis(OA)is a degenerative disease associated with aging and has long been linked to obesity. Some studies suggest that OA might be a metabolic disease, impacting not only weight-bearing joints but also non-weight-bearing joints. Emerging evidence indicates abnormal cholesterol metabolism in osteoarthritis, with pathways leading to the production of pro-inflammatory substances crucial to OA development. Drugs capable of modulating abnormal cholesterol metabolism hold considerable therapeutic promise for OA. This article aims to summarize the role and comprehensive molecular mechanisms of cholesterol metabolism in osteoarthritis and proposes that a multi-faceted regulation of cholesterol metabolism could be a promising strategy for the clinical treatment of osteoarthritis.

Key words: Osteoarthritis, Metabolic syndrome(MetS), Cholesterol metabolism disorder, Oxidized low density lipoprotein, Cholesterol metabolism

中图分类号: 

  • R687.4+1
[1] Luo J, Yang HY, Song BL. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245.
[2] Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis[J]. Prog Lipid Res, 2013, 52(1): 175-191.
[3] Ridker PM, Bhatt DL, Pradhan AD, et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials[J]. Lancet, 2023, 401(10384): 1293-1301.
[4] Zhang X, Coker OO, Chu ES, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites[J]. Gut, 2021, 70(4): 761-774.
[5] 唐博, 邵静, 崔静, 等. 2型糖尿病发病与高密度脂蛋白关系的机制研究[J]. 山东大学学报(医学版), 2020, 58(3): 99-106. TANG Bo, SHAO Jing, CUI Jing, et al. A mechanism study on the association of type 2 diabetes and high-density lipoprotein[J]. Journal of Shandong University(Health Sciences), 2020, 58(3): 99-106.
[6] Campbell BCV, De Silva DA, MacLeod MR, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1): 70.
[7] Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J]. Nat Rev Dis Primers, 2016, 2: 16072. doi:10.1038/nrdp.2016.72.
[8] Zheng LL, Zhang ZJ, Sheng PY, et al. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis[J].Ageing Res Rev,2021,66:101249. doi:10.1016/j.arr.2020.101249.
[9] Song YF, Liu JJ, Zhao K, et al. Cholesterol-induced toxicity: an integrated view of the role of cholesterol in multiple diseases[J]. Cell Metab, 2021, 33(10): 1911-1925.
[10] Hoeven TA, Kavousi M, Clockaerts S, et al. Association of atherosclerosis with presence and progression of osteoarthritis: the Rotterdam Study[J]. Ann Rheum Dis, 2013, 72(5): 646-651.
[11] Hindy G, Åkesson KE, Melander O, et al. Cardiometabolic polygenic risk scores and osteoarthritis outcomes: a Mendelian randomization study using data from the malmö diet and cancer study and the UK biobank[J]. Arthritis Rheumatol, 2019, 71(6): 925-934.
[12] Tsezou A, Iliopoulos D, Malizos KN, et al. Impaired expression of genes regulating cholesterol efflux in human osteoarthritic chondrocytes[J]. J Orthop Res, 2010, 28(8): 1033-1039.
[13] Goicoechea L, Conde de la Rosa L, Torres S, et al. Mitochondrial cholesterol: metabolism and impact on redox biology and disease[J]. Redox Biol, 2023, 61: 102643. doi:10.1016/j.redox.2023.102643.
[14] Amorim JA, Coppotelli G, Rolo AP, et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases[J]. Nat Rev Endocrinol, 2022, 18(4): 243-258.
[15] Su LJ, Zhang JH, Gomez H, et al. Mitochondria ROS and mitophagy in acute kidney injury[J]. Autophagy, 2023, 19(2): 401-414.
[16] Farnaghi S, Prasadam I, Cai G, et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis[J]. FASEB J, 2017, 31(1): 356-367.
[17] King RJ, Singh PK, Mehla K. The cholesterol pathway: impact on immunity and cancer[J]. Trends Immunol, 2022, 43(1): 78-92.
[18] 李艳, 孙凤娇, 张天然, 等. 高糖、高脂饮食与不同浓度硒对大鼠脂代谢及氧化应激的影响[J]. 山东大学学报(医学版), 2020, 58(5): 98-106. LI Yan, SUN Fengjiao, ZHANG Tianran, et al. Effects of high-sugar, high-fat diet and different concentrations of selenium on lipid metabolism and oxidative stress in rats[J]. Journal of Shandong University(Health Sciences), 2020, 58(5): 98-106.
[19] Wang Z, Ni SF, Zhang HF, et al. Silencing SGK1 alleviates osteoarthritis through epigenetic regulation of CREB1 and ABCA1 expression[J]. Life Sci, 2021, 268: 118733. doi:10.1016/j.lfs.2020.118733.
[20] van der Vorst EPC, Theodorou K, Wu YZ, et al. High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-κB/STAT1-IRF1 signaling[J]. Cell Metab, 2017, 25(1): 197-207.
[21] Castañer O, Pintó X, Subirana I, et al. Remnant cholesterol, not LDL cholesterol, is associated with incident cardiovascular disease[J]. J Am Coll Cardiol, 2020, 76(23): 2712-2724.
[22] Dunk MM, Li J, Liu SM, et al. Associations of dietary cholesterol and fat, blood lipids, and risk for dementia in older women vary by APOE genotype[J]. Alzheimers Dement, 2023, 19(12): 5742-5754.
[23] Perna L, Mons U, Stocker H, et al. High cholesterol levels change the association of biomarkers of neurodegenerative diseases with dementia risk: findings from a population-based cohort[J]. Alzheimers Dement, 2023, 19(7): 2913-2922.
[24] Birch J, Gil J. Senescence and the SASP: many therapeutic avenues[J]. Genes Dev, 2020, 34(23): 1565-1576.
[25] Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57.
[26] Shin HR, Citron YR, Wang L, et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1[J]. Science, 2022, 377(6612): 1290-1298.
[27] Roh K, Noh J, Kim Y, et al. Lysosomal control of senescence and inflammation through cholesterol partitioning[J]. Nat Metab, 2023, 5(3): 398-413.
[28] 张杰, 杨求胜, 彭旭聪, 等. 胆固醇结晶相关的疾病以及消除结晶的治疗策略[J]. 中南药学, 2023, 21(7): 1883-1889. ZHANG Jie, YANG Qiusheng, PENG Xucong, et al. Cholesterol crystals related diseases and elimination strategies[J]. Central South Pharmacy, 2023, 21(7): 1883-1889.
[29] Shi CX, Kim T, Steiger S, et al. Crystal clots as therapeutic target in cholesterol crystal embolism[J]. Circ Res, 2020, 126(8): 37-52.
[30] Speer T, Dimmeler S, Schunk SJ, et al. Targeting innate immunity-driven inflammation in CKD and cardiovascular disease[J]. Nat Rev Nephrol, 2022, 18(12): 762-778.
[31] ORourke SA, Neto NGB, Devilly E, et al. Cholesterol crystals drive metabolic reprogramming and M1 macrophage polarisation in primary human macrophages[J]. Atherosclerosis, 2022, 352: 35-45. doi:10.1016/j.atherosclerosis.2022.05.015.
[32] Guo CS, Chi ZX, Jiang DL, et al. Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages[J]. Immunity, 2018, 49(5): 842-856.
[33] Niyonzima N, Bakke SS, Gregersen I, et al. Cholesterol crystals use complement to increase NLRP3 signaling pathways in coronary and carotid atherosclerosis[J]. EBioMedicine, 2020, 60: 102985. doi:10.1016/j.ebiom.2020.102985.
[34] Cao CX, Shi YY, Zhang X, et al. Cholesterol-induced LRP3 downregulation promotes cartilage degeneration in osteoarthritis by targeting Syndecan-4[J]. Nat Commun, 2022, 13(1): 7139.
[35] Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action[J]. Front Endocrinol, 2021, 12: 624112. doi:10.3389/fendo.2021.624112.
[36] Chen XR, Zhu XB, Dong J, et al. Reversal of epigenetic peroxisome proliferator-activated receptor-γ suppression by diacerein alleviates oxidative stress and osteoarthritis in mice[J]. Antioxid Redox Signal, 2022, 37(1): 40-53.
[37] Zhu XB, Chen F, Lu K, et al. PPARγ preservation via promoter demethylation alleviates osteoarthritis in mice[J]. Ann Rheum Dis, 2019, 78(10): 1420-1429.
[38] Kim J, Ryu G, Seo J, et al. 5-aminosalicylic acid suppresses osteoarthritis through the OSCAR-PPARγ axis[J]. Nat Commun, 2024, 15(1): 1024.
[39] Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions[J]. Nat Rev Cardiol, 2021, 18(12): 809-823.
[40] Vasheghani F, Zhang Y, Li YH, et al. PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage[J]. Ann Rheum Dis, 2015, 74(3): 569-578.
[41] Park S, Baek IJ, Ryu JH, et al. PPARα-ACOT12 axis is responsible for maintaining cartilage homeostasis through modulating de novo lipogenesis[J]. Nat Commun, 2022, 13(1): 3.
[42] Bougarne N, Weyers B, Desmet SJ, et al. Molecular actions of PPARα in lipid metabolism and inflammation[J]. Endocr Rev, 2018, 39(5): 760-802.
[43] Nazih H, Bard JM. Cholesterol, oxysterols and LXRs in breast cancer pathophysiology[J]. Int J Mol Sci, 2020, 21(4): 1356.
[44] Duc D, Vigne S, Pot C. Oxysterols in autoimmunity[J]. Int J Mol Sci, 2019, 20(18): 4522.
[45] Yanagisawa R, He CQ, Asai A, et al. The impacts of cholesterol, oxysterols, and cholesterol lowering dietary compounds on the immune system[J]. Int J Mol Sci, 2022, 23(20): 12236.
[46] He YH, Liu TT. Oxidized low-density lipoprotein regulates macrophage polarization in atherosclerosis[J]. Int Immunopharmacol, 2023, 120: 110338. doi:10.1016/j.intimp.2023.110338
[47] Choi MC, Jo J, Park J, et al. NF-κB signaling pathways in osteoarthritic cartilage destruction[J]. Cells, 2019, 8(7): 734.
[48] Choi WS, Lee G, Song WH, et al. The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis[J]. Nature, 2019, 566(7743): 254-258.
[49] Romani P, Brian I, Santinon G, et al. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP[J]. Nat Cell Biol, 2019, 21(3): 338-347.
[50] Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology-divergent pathophysiology[J]. Nat Rev Endocrinol, 2017, 13(12): 710-730.
[51] Kostopoulou F, Gkretsi V, Malizos KN, et al. Central role of SREBP-2 in the pathogenesis of osteoarthritis[J]. PLoS One, 2012, 7(5): 35753.
[52] Poli A, Marangoni F, Corsini A, et al. Phytosterols, cholesterol control, and cardiovascular disease[J]. Nutrients, 2021, 13(8): 2810.
[53] Ros E, Singh A, OKeefe JH. Nuts: natural pleiotropic nutraceuticals[J]. Nutrients, 2021, 13(9): 3269.
[54] Arden NK, Perry TA, Bannuru RR, et al. Non-surgical management of knee osteoarthritis: comparison of ESCEO and OARSI 2019 guidelines[J]. Nat Rev Rheumatol, 2021, 17(1): 59-66.
[55] Safran-Norton CE, Sullivan JK, Irrgang JJ, et al. A consensus-based process identifying physical therapy and exercise treatments for patients with degenerative meniscal tears and knee OA: the TeMPO physical therapy interventions and home exercise program[J]. BMC Musculoskelet Disord, 2019, 20(1): 514.
[56] Nelligan RK, Hinman RS, Kasza J, et al. Effects of a self-directed web-based strengthening exercise and physical activity program supported by automated text messages for people with knee osteoarthritis: a randomized clinical trial[J]. JAMA Intern Med, 2021, 181(6): 776-785.
[57] Heidari B, Babaei M, Yosefghahri B. Prevention of osteoarthritis progression by statins, targeting metabolic and inflammatory aspects: a review[J]. Mediterr J Rheumatol, 2021, 32(3): 227-236.
[58] Sarmanova A, Doherty M, Kuo CF, et al. Statin use and risk of joint replacement due to osteoarthritis and rheumatoid arthritis: a propensity-score matched longitudinal cohort study[J]. Rheumatology, 2020, 59(10): 2898-2907.
[59] Hosseinzadeh A, Bahrampour Juybari K, Kamarul T, et al. Protective effects of atorvastatin on high glucose-induced oxidative stress and mitochondrial apoptotic signaling pathways in cultured chondrocytes[J]. J Physiol Biochem, 2019, 75(2): 153-162.
[60] Yu SM, Han Y, Kim SJ. Simvastatin abolishes nitric oxide- and reactive oxygen species-induced cyclooxygenase-2 expression by blocking the nuclear factor κB pathway in rabbit articular chondrocytes[J]. Cell Biol Int, 2020, 44(10): 2153-2162.
[61] Li LQ, Xu HY, Qu LH, et al. Water extracts of Polygonum Multiflorum Thunb. and its active component emodin relieves osteoarthritis by regulating cholesterol metabolism and suppressing chondrocyte inflammation[J]. Acupunct Herb Med, 2023, 3(2): 96-106.
[62] Li XC, Zhang L, Shi XQ, et al. MicroRNA-10a-3p improves cartilage degeneration by regulating CH25H-CYP7B1-RORα mediated cholesterol metabolism in knee osteoarthritis rats[J]. Front Pharmacol, 2021, 12: 690181. doi:10.3389/fphar.2021.690181.
[1] 马良,张元凯,姜淑伟. 便携式导航与传统手术器械下的20例全膝关节置换术后早期疗效随访对比[J]. 山东大学学报 (医学版), 2022, 60(6): 75-81.
[2] 张薇薇,华芳,梁超帅,褚苗苗,孙嘉忆,Frank Zaucke,辛玮. 促甲状腺激素通过抗炎蛋白CTRP3促进软骨细胞分化[J]. 山东大学学报 (医学版), 2022, 60(10): 1-8.
[3] 苗壮,刘培来,卢群山,姚天笑,李松林,罗德素. 双柱活动型单髁假体治疗膝关节内侧骨关节炎的早期疗效分析[J]. 山东大学学报 (医学版), 2021, 59(5): 90-95.
[4] 华芳,张薇薇,吕波,辛玮. 生物信息学分析骨关节炎滑膜炎症相关基因和分子途径[J]. 山东大学学报 (医学版), 2021, 59(3): 10-17.
[5] 扈艳雯,王志媛,郁万江,赵蕙琛,韩合理,徐志鹏,马红,张玉超,刘元涛. 52例肥胖患者脂肪分布与代谢综合征及糖代谢指标的相关性[J]. 山东大学学报 (医学版), 2020, 1(8): 101-106.
[6] 李松林,刘培来,卢群山,马贺然. 胫骨高位截骨术联合自体脂肪间充质干细胞注射在膝关节软骨修复中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 82-88.
[7] 马晓天,顾建华,王丽,薛付忠,刘言训. 血小板计数与代谢综合征关联性的前瞻性队列研究[J]. 山东大学学报 (医学版), 2018, 56(12): 92-97.
[8] 孙苑潆,杨亚超,曲明苓,陈雁敏,李敏,王淑康,薛付忠,刘云霞. 健康管理人群代谢综合征发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 87-92.
[9] 于珍珍,陈慧,杨晓云,吕明. 高尿酸血症、幽门螺杆菌感染与代谢综合征的相关性[J]. 山东大学学报(医学版), 2017, 55(5): 76-80.
[10] 许艺博,季晓康,李向一,申振伟,薛付忠. 尿液pH与代谢综合征的相关性[J]. 山东大学学报(医学版), 2016, 54(12): 82-85.
[11] 肖娟, 陈启才,张鹏鹏,陈莉莉,陈潇潇,王束玫. 东营市某三甲医院纵向体检资料的血清谷丙转氨酶水平与代谢综合征的相关性[J]. 山东大学学报(医学版), 2016, 54(1): 86-91.
[12] 辛林伟, 王梨明, 李朝旭, 唐际存, 江梦谣, 区权利. 尿液中C2C水平对膝关节骨关节炎的诊断价值[J]. 山东大学学报(医学版), 2015, 53(6): 94-96.
[13] 张风雷, 郑曼, 张琦, 顾磊, 徐新生. 代谢综合征与P波离散度关系的探讨[J]. 山东大学学报(医学版), 2015, 53(2): 52-55.
[14] 王光亚, 郭宁宁, 赵乃蕊, 李瑞杰, 高书明. 脂联素水平在2型糖尿病和甲状腺疾病中的变化及意义[J]. 山东大学学报(医学版), 2014, 52(S1): 96-97.
[15] 靳成伟, 李葵, 赵静, 岳欣, 尚嫄嫄, 韩露, 张运, 张薇, 马骁, 钟明. 外周血单核细胞甘油三酯水解酶的表达与代谢综合征的相关性[J]. 山东大学学报(医学版), 2014, 52(8): 39-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!