您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (2): 1-9.doi: 10.6040/j.issn.1671-7554.0.2024.0787

• 基础医学 •    下一篇

微小RNA-1270靶向调控血管生成素样蛋白7抑制巨噬细胞炎症和脂质蓄积

杜艾家,张曼,陈鹤,王丽新,尚应殊   

  1. 沈阳医学院附属中心医院心血管内科, 辽宁 沈阳 110024
  • 出版日期:2025-03-10 发布日期:2025-03-07
  • 通讯作者: 张曼. E-mail:zhangm0046@163.com
  • 基金资助:
    沈阳市科学技术计划项目(22-321-33-93)

miR-1270-targeted regulation of angiopoietin-like protein 7 inhibits macrophage inflammation and lipid accumulation

DU Aijia, ZHANG Man, CHEN He, WANG Lixin, SHANG Yingshu   

  1. Department of Cardiology, Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning, China
  • Online:2025-03-10 Published:2025-03-07

摘要: 目的 应用氧化低密度脂蛋白(oxidized low-density lipoprotein, ox-LDL)诱导的小鼠巨噬细胞株制备动脉粥样硬化模型,观察微小RNA-1270(microRNA-1270, miRNA-1270)是否经血管生成素样蛋白7(angiopoietin-like protein 7, ANGPTL7)/ p38途径干预巨噬细胞炎症及血脂代谢。 方法 培养小鼠单核巨噬细胞(RAW264.7),并加入ox-LDL构建动脉粥样硬化模型。根据干预条件不同分为空白组、ox-LDL组、ANGPTL7组、 p38蛋白抑制组、 p65蛋白抑制组、miR-1270模拟物组、miR-1270模拟物阴性对照组、miR-1270抑制物组和miR-1270抑制物阴性对照组。采用实时定量 PCR法检测mRNA表达水平,采用Western blotting法检测蛋白质表达水平,采用油红染色法检测脂质蓄积。 结果 ox-LDL暴露的巨噬细胞中含红色脂肪微粒的巨噬细胞数量增加,ANGPTL7高表达,p38高表达,白介素-6(interleukin-6, IL-6)高表达,白介素-10(interleukin-10, IL-10)低表达,且ANGPTL7与p38及脂质蓄积呈正相关(P<0.01)。与ox-LDL组相比,ANGPTL7组ANGPTL7、p38及IL-6蛋白相对表达量增加,IL-10蛋白相对表达量减少,含红色脂肪微粒的巨噬细胞数量增加(P<0.01)。与ANGPTL7组相比,p38蛋白抑制组ANGPTL7和p38蛋白相对表达量无明显差异,IL-6蛋白相对表达量减少,IL-10蛋白相对表达量增加,含红色脂肪微粒的巨噬细胞数量减少(P<0.01)。与ANGPTL7组相比,p65蛋白抑制组各项指标表达量、含红色脂肪微粒的巨噬细胞数量差异无统计学意义(P>0.05)。与空白组相比,ox-LDL组miR-1270基因相对表达量减少,ANGPTL7基因及蛋白相对表达量增加, miR-1270与ANGPTL7基因相对表达量呈负相关(P<0.01)。与ox-LDL组相比,miR-1270模拟物组miR-1270基因相对表达量增加,ANGPTL7基因及蛋白相对表达量减少,p38及IL-6蛋白相对表达量减少,IL-10蛋白相对表达量增加,含红色脂肪微粒的巨噬细胞数量减少(P<0.01);miR-1270抑制物组miR-1270基因相对表达量减少,ANGPTL7基因及蛋白相对表达量增加,p38及IL-6蛋白相对表达量增加,IL-10蛋白相对表达量减少,含红色脂肪微粒的巨噬细胞数量增加(P<0.01);与ox-LDL组相比,阴性对照物组各项指标表达量无明显差异,含红色脂肪微粒的巨噬细胞数量差异无统计学意义(P>0.05)。 结论 在ox-LDL暴露的巨噬细胞模型中,ANGPTL7促进巨噬细胞内的炎症和脂质蓄积必经p38途径实现,是促进动脉粥样硬化的发生发展新机制。miR-1270作为保护性因子,可靶向抑制ANGPTL7基因转录表达,经p38途径减轻巨噬细胞炎症及脂质蓄积,可逆调控动脉粥样硬化发生发展,是动脉粥样硬化潜在的早期筛查靶点。

关键词: 基因表观遗传学, 动脉粥样硬化, 微小RNA-1270, 血管生成素样蛋白7, p38蛋白, 炎症反应, 脂质蓄积

Abstract: Objective To prepare an atherosclerosis(As)model employing an oxidised low-density lipoprotein(ox-LDL)-induced mouse macrophage cell line, so as to see whether microRNA-1270(miRNA-1270)interfered with macrophage inflammation and lipid metabolism via the angiopoietin-like protein 7(ANGPTL7)/p38 pathway. Methods Mouse mononuclear macrophages(RAW264.7)were cultured and ox-LDL was added to construct macrophage models. According to the different intervention conditions, the groups were as follows: blank group, ox-LDL group, ANGPTL7 group, p38 protein inhibition group, p65 protein inhibition group, miR-1270 mimic group, miR-1270 mimic negative control group, miR-1270 inhibitor group, and miR-1270 inhibitor negative control group. The mRNA expression level was detected by real-time quantitative PCR, the protein expression level was detected by Western bloting, and the lipid accumulation was detected by oil red staining. Results The number of macrophages containing red fat particles was increased in ox-LDL-exposed macrophages, with high expressions of ANGPTL7, p38, and IL-6, and low expression of IL-10, and a positive correlation between ANGPTL7 and p38 and lipid accumulation(P<0.01). Compared with the ANGPTL7 group, there was no significant difference in the relative expression of ANGPTL7 and p38 proteins in the p38 protein inhibition group, a decrease in the relative expression of IL-6 protein, an increase in the relative expression of IL-10 protein, and a decrease in the number of red adipose microparticle-containing macrophages(P<0.01). Compared with the ANGPTL7 group, there was no statistically significant difference in the expression of the indicators in the p65 protein inhibition group, and there was no statistically significant difference in the number of macrophages containing red fat particles(P>0.05). Compared with the blank group, the relative expression of miR-1270 gene was decreased and the relative expression of ANGPTL7 gene and protein was increased in the ox-LDL group, and miR-1270 was negatively correlated with the relative expressions of ANGPTL7 gene(r2=0.665 7, P<0.01). Compared with the ox-LDL group, the miR-1270 mimic group had increased relative expression of the miR-1270 gene, decreased relative expression of the ANGPTL7 gene and protein, decreased relative expression of the p38 and IL-6 proteins, increased relative expression of the IL-10 protein, and decreased number of red adipose microparticle-containing macrophages(P<0.01). The miR-1270 inhibitor group had a decrease in the relative expression of the miR-1270 gene, an increase in the relative expression of the ANGPTL7 gene and protein, an increase in the relative expressions of the p38 and IL-6 proteins, a decrease in the relative expression of the IL-10 protein, and an increase in the number of macrophages containing red adipose microparticles(P<0.01). Compared with the ox-LDL group, there was no significant difference in the expression of the indicators in the negative control group, and there was no statistically significant difference in the number of macrophages containing red fat particles(P>0.05). Conclusion In the ox-LDL-exposed macrophage model, ANGPTL7 promotes inflammation and lipid accumulation in macrophages via the p38 pathway, which is a new mechanism to promote the development of atherosclerosis. miR-1270, as a protective factor, can target and inhibit the transcriptional expression of the ANGPTL7 gene, reduce macrophage inflammation and lipid accumulation via the p38 pathway, and reversibly control the development of atherosclerosis, and is a potential early screening target for atherosclerosis. It is a potential target for early screening of atherosclerosis.

Key words: Gene epigenetics, Atherosclerosis, microRNA-1270, Angiopoietin-like protein 7, p38 protein, Inflammatory response, Lpid accumulation

中图分类号: 

  • R543.5
[1] Milutinovi c A, Šuput D, Zorc-Pleskovi c R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: an updated review[J]. Bosn J Basic Med Sci, 2020, 20(1): 21-30.
[2] 秦超师, 牛晓琳. PCSK9促进动脉粥样硬化的机制进展[J]. 心脏杂志, 2021, 33(4): 447-451. QIN Chaoshi, NIU Xiaolin. Mechanisms of PCSK9 on development of atherosclerosis[J]. China Industrial Economics, 2021, 33(4): 447-451.
[3] 胡斌, 牛志伟, 李琳. 人ANGPTL7蛋白生物信息学分析[J]. 山西医科大学学报, 2018, 49(6): 636-643. HU Bin, NIU Zhiwei, LI Lin. Bioinformatics analysis of human ANGPTL7 protein[J]. Journal of Shanxi Medical University, 2018, 49(6): 636-643.
[4] Bradfield JP, Taal HR, Timpson NJ, et al. A genome-wide association meta-analysis identifies new childhood obesity loci[J]. Nat Genet, 2012, 44(5): 526-531.
[5] Abu-Farha M, Cherian P, Al-Khairi I, et al. Plasma and adipose tissue level of angiopoietin-like 7(ANGPTL7)are increased in obesity and reduced after physical exercise[J]. PLoS One, 2017, 12(3): e0173024.
[6] Li J, Liang T, Wang Y, et al. Angiopoietin-like protein 7 mediates TNF-α-induced adhesion and oxidative stress in human umbilical vein epithelial cell[J]. Gen Physiol Biophys, 2020, 39(3): 285-292.
[7] Zhao Y, Liu K, Yin D, et al. Angiopoietin-like 7 contributes to angiotensin II-induced proliferation, inflammation and apoptosis in vascular smooth muscle cells[J]. Pharmacology, 2019,104(5-6): 226-234.
[8] Allayee H, Farber CR, Seldin MM, et al. Systems genetics approaches for understanding complex traits with relevance for human disease[J]. Elife, 2023, 12: e91004. doi:10.7554/elife.91004.
[9] 余琴, 梁丽艳, 刘超群, 等. 急性心肌梗死患者血清miR-133a、miR-499-5p表达与PCI术后冠状动脉无复流的关系[J]. 国际检验医学杂志, 2023, 44(9): 1059-1063. YU Qin, LIANG Liyan, LIU Chaoqun, et al. Relationship between serum miR-133 a, miR-499-5 p expression in patients with acute myocardial infarction and no coronary reflow after PCI[J]. International Journal of Laboratory Medicine, 2023, 44(9): 1059-1063.
[10] 郭丽婷, 郑辉. MicroRNAs在动脉粥样硬化发病机制中的调控作用[J]. 医学理论与实践, 2022, 35(13): 2188-2189. GUO Liting, ZHENG Hui. Regulatory role of microRNAs in the pathogenesis of atherosclerosis[J]. The Journal of Medical Theory and Practice, 2022, 35(13): 2188-2189.
[11] Chen L, Hu L, Zhu X, et al. MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated dendritic cell maturation via miR-155-5p/NFIA axis[J]. Cell Cycle, 2020, 19(19): 2472-2485.
[12] Chen S, Saeed AFUH, Liu Q, et al. Macrophages in immunoregulation and therapeutics[J]. Signal Transduct Target Ther, 2023, 22, 8(1): 207.
[13] Wang K, Bai X, Mei L, et al. CircRNA_0050486 promotes cell apoptosis and inflammation by targeting miR-1270 in atherosclerosis[J]. Ann Transl Med, 2022, 10(16): 905.
[14] Liu YZ, Zhang C, Jiang JF, et al. Angiopoietin-like proteins in atherosclerosis[J]. Clin Chim Acta, 2021, 521: 19-24. doi: 10.1016/j.cca.2021.06.024.
[15] Mazidi M, Wright N, Yao P, et al. Plasma proteomics to identify drug targets for ischemic heart disease[J]. J Am Coll Cardiol, 2023, 82(20): 1906-1920.
[16] Ehrlich KC, Lacey M, Ehrlich M. Tissue-specific epigenetics of atherosclerosis-related ANGPT and ANGPTL genes[J]. Epigenomics, 2019, 11(2): 169-186.
[17] Luo M, Peng D. ANGPTL8: an important regulator in metabolic disorders[J]. Front Endocrinol(Lausanne), 2018, 9: 169. doi: 10.3389/fendo.2018.00169. eCollection 2018.
[18] Xu F, Shen L, Yang Y, et al. Association between plasma levels of ANGPTL3, 4, 8 and the most common additional cardiovascular risk factors in patients with hypertension[J]. Diabetes Metab Syndr Obes, 2023, 16: 1647-1655. doi: 10.2147/DMSO.S411483. eCollection 2023.
[19] Thorin E, Labbé P, Lambert M, et al. Angiopoietin-like proteins: cardiovascular biology and therapeutic targeting for the prevention of cardiovascular diseases[J]. Can J Cardiol, 2023, 39(12): 1736-1756.
[20] 中国血脂管理指南修订联合专家委员会. 中国血脂管理指南(2023年)[J]. 中国循环杂志, 2023, 38(3): 237-271.
[21] 罗庭, 周小雁, 罗平, 等. 急性冠脉综合征患者血清ANGPTL3与炎症激活、糖脂代谢紊乱的相关性研究[J]. 中国循证心血管医学杂志, 2020, 12(10): 1251-1254. LUO Ting, ZHOU Xiaoyan, LUO Ping, et al. Correlation between serum ANGPTL3 and inflammatory activation and glucose and lipid metabolism disorders in patients with acute coronary syndrome[J]. Chinese Journal of Evidence-Based Cardiovascular Medicine, 2020, 12(10): 1251-1254.
[22] 蓝依婷, 陆兆华. 血管生成素样因子-7在心血管疾病中的研究进展[J]. 心血管病防治知识, 2022, 12(14): 91-94. LAN Yiting, LU Zhaohua. Research progress of angiopoietin-like factor-7 in cardiovascular diseases[J]. Prevention and Treatment of Cardiovascular Disease, 2022, 12(14): 91-94.
[23] Leentjens M, Alterki A, Abu-Farha M, et al. Increased plasma ANGPTL7 levels with increased obstructive sleep apnea severity[J]. Front Endocrinol(Lausanne), 2022, 13: 922425. doi: 10.3389/fendo.2022.922425. eCollection 2022.
[24] Qian T, Wang K, Cui J, et al. Angiopoietin-like protein 7 promotes an inflammatory phenotype in RAW264.7 macrophages through the P38 MAPK signaling pathway[J]. Inflammation, 2016, 39(3): 974-985.
[25] 刘岩, 张曼, 姜朝阳, 等. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J].山东大学学报(医学版), 2022, 60(6): 1-9.
[26] Procyk G, Grodzka O, Procyk M, et al. MicroRNAs in myocarditis-review of the preclinical in vivo trials[J]. Biomedicines, 2023, 11(10): 2723.
[27] Beňa cka R, Szabóová D, Gulašová Z, et al. Non-coding RNAs in human cancer and other diseases: overview of the diagnostic potential[J]. Int J Mol Sci, 2023, 24(22): 16213.
[28] Chen X, Yang Y, Sun J, et al. LncRNA HCG11 represses ovarian cancer cell growth via AKT signaling pathway[J]. J Obstet Gynaecol Res, 2022, 48(3): 796-805.
[29] 陈煜. PTEN与动脉粥样硬化[J]. 临床与病理杂志, 2023, 43(4): 836-841. CHEN YU. PTEN and atherosclerosis[J]. Journal of Clinical and Pathological Research, 2023, 43(4): 836-841.
[1] 许天旗,常娜,张帅,李莎,矫秉轩,于鑫鑫,王锡明. 非酒精性脂肪肝识别基于CTA颈动脉高危斑块[J]. 山东大学学报 (医学版), 2023, 61(12): 36-43.
[2] 杨元凤,熊高才,黎豫川,罗玉玲,张敬杰. 鹿苓安肾颗粒对慢性肾功能衰竭大鼠炎症反应及细胞凋亡的影响[J]. 山东大学学报 (医学版), 2023, 61(10): 9-16.
[3] 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13.
[4] 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88.
[5] 刘岩,张曼,姜朝阳,卞姝,杜艾家,陈鹤. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J]. 山东大学学报 (医学版), 2022, 60(6): 1-9.
[6] 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12.
[7] 谢佳莹,祁佳,宋铭,李育林,王迪,贾旭,张薇,钟明,尚嫄嫄. 血清蛋白质β-折叠水平与冠心病的相关性[J]. 山东大学学报 (医学版), 2022, 60(1): 21-26.
[8] 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21.
[9] 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9.
[10] 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7.
[11] 高金梅,黄映波,冯珍珍. 单核细胞趋化蛋白-1对67例全身炎症反应综合征患者的诊断价值[J]. 山东大学学报 (医学版), 2021, 59(10): 77-81.
[12] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31.
[13] 金海燕,张炎,马小莉,韩羽,赵蕙琛,刘元涛,张玉超. MiR-122与miR-33a在2型糖尿病合并冠心病患者中的表达[J]. 山东大学学报 (医学版), 2020, 58(3): 94-98.
[14] 娄福臣,刘性祥,马国云,庄向华. 阿卡波糖对冠心病合并糖耐量受损患者YKL-40和肠道菌群的影响[J]. 山东大学学报 (医学版), 2019, 57(7): 86-91.
[15] 郭配,李秀华,张晓韬,何天齐,朱梅佳,唐吉友,赵张宁,毛飞. 伴有睡眠障碍帕金森病患者的睡眠特征及其影响因素[J]. 山东大学学报 (医学版), 2018, 56(4): 76-80.
Viewed
Full text
52
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 52

  From local
  Times 52
  Rate 100%

Abstract
70
Just accepted Online first Issue
0 0 70
  From Others local
  Times 69 1
  Rate 99% 1%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!