山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (2): 1-9.doi: 10.6040/j.issn.1671-7554.0.2024.0787
• 基础医学 • 下一篇
杜艾家,张曼,陈鹤,王丽新,尚应殊
DU Aijia, ZHANG Man, CHEN He, WANG Lixin, SHANG Yingshu
摘要: 目的 应用氧化低密度脂蛋白(oxidized low-density lipoprotein, ox-LDL)诱导的小鼠巨噬细胞株制备动脉粥样硬化模型,观察微小RNA-1270(microRNA-1270, miRNA-1270)是否经血管生成素样蛋白7(angiopoietin-like protein 7, ANGPTL7)/ p38途径干预巨噬细胞炎症及血脂代谢。 方法 培养小鼠单核巨噬细胞(RAW264.7),并加入ox-LDL构建动脉粥样硬化模型。根据干预条件不同分为空白组、ox-LDL组、ANGPTL7组、 p38蛋白抑制组、 p65蛋白抑制组、miR-1270模拟物组、miR-1270模拟物阴性对照组、miR-1270抑制物组和miR-1270抑制物阴性对照组。采用实时定量 PCR法检测mRNA表达水平,采用Western blotting法检测蛋白质表达水平,采用油红染色法检测脂质蓄积。 结果 ox-LDL暴露的巨噬细胞中含红色脂肪微粒的巨噬细胞数量增加,ANGPTL7高表达,p38高表达,白介素-6(interleukin-6, IL-6)高表达,白介素-10(interleukin-10, IL-10)低表达,且ANGPTL7与p38及脂质蓄积呈正相关(P<0.01)。与ox-LDL组相比,ANGPTL7组ANGPTL7、p38及IL-6蛋白相对表达量增加,IL-10蛋白相对表达量减少,含红色脂肪微粒的巨噬细胞数量增加(P<0.01)。与ANGPTL7组相比,p38蛋白抑制组ANGPTL7和p38蛋白相对表达量无明显差异,IL-6蛋白相对表达量减少,IL-10蛋白相对表达量增加,含红色脂肪微粒的巨噬细胞数量减少(P<0.01)。与ANGPTL7组相比,p65蛋白抑制组各项指标表达量、含红色脂肪微粒的巨噬细胞数量差异无统计学意义(P>0.05)。与空白组相比,ox-LDL组miR-1270基因相对表达量减少,ANGPTL7基因及蛋白相对表达量增加, miR-1270与ANGPTL7基因相对表达量呈负相关(P<0.01)。与ox-LDL组相比,miR-1270模拟物组miR-1270基因相对表达量增加,ANGPTL7基因及蛋白相对表达量减少,p38及IL-6蛋白相对表达量减少,IL-10蛋白相对表达量增加,含红色脂肪微粒的巨噬细胞数量减少(P<0.01);miR-1270抑制物组miR-1270基因相对表达量减少,ANGPTL7基因及蛋白相对表达量增加,p38及IL-6蛋白相对表达量增加,IL-10蛋白相对表达量减少,含红色脂肪微粒的巨噬细胞数量增加(P<0.01);与ox-LDL组相比,阴性对照物组各项指标表达量无明显差异,含红色脂肪微粒的巨噬细胞数量差异无统计学意义(P>0.05)。 结论 在ox-LDL暴露的巨噬细胞模型中,ANGPTL7促进巨噬细胞内的炎症和脂质蓄积必经p38途径实现,是促进动脉粥样硬化的发生发展新机制。miR-1270作为保护性因子,可靶向抑制ANGPTL7基因转录表达,经p38途径减轻巨噬细胞炎症及脂质蓄积,可逆调控动脉粥样硬化发生发展,是动脉粥样硬化潜在的早期筛查靶点。
中图分类号:
[1] | Milutinovi c A, Šuput D, Zorc-Pleskovi c R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: an updated review[J]. Bosn J Basic Med Sci, 2020, 20(1): 21-30. |
[2] | 秦超师, 牛晓琳. PCSK9促进动脉粥样硬化的机制进展[J]. 心脏杂志, 2021, 33(4): 447-451. QIN Chaoshi, NIU Xiaolin. Mechanisms of PCSK9 on development of atherosclerosis[J]. China Industrial Economics, 2021, 33(4): 447-451. |
[3] | 胡斌, 牛志伟, 李琳. 人ANGPTL7蛋白生物信息学分析[J]. 山西医科大学学报, 2018, 49(6): 636-643. HU Bin, NIU Zhiwei, LI Lin. Bioinformatics analysis of human ANGPTL7 protein[J]. Journal of Shanxi Medical University, 2018, 49(6): 636-643. |
[4] | Bradfield JP, Taal HR, Timpson NJ, et al. A genome-wide association meta-analysis identifies new childhood obesity loci[J]. Nat Genet, 2012, 44(5): 526-531. |
[5] | Abu-Farha M, Cherian P, Al-Khairi I, et al. Plasma and adipose tissue level of angiopoietin-like 7(ANGPTL7)are increased in obesity and reduced after physical exercise[J]. PLoS One, 2017, 12(3): e0173024. |
[6] | Li J, Liang T, Wang Y, et al. Angiopoietin-like protein 7 mediates TNF-α-induced adhesion and oxidative stress in human umbilical vein epithelial cell[J]. Gen Physiol Biophys, 2020, 39(3): 285-292. |
[7] | Zhao Y, Liu K, Yin D, et al. Angiopoietin-like 7 contributes to angiotensin II-induced proliferation, inflammation and apoptosis in vascular smooth muscle cells[J]. Pharmacology, 2019,104(5-6): 226-234. |
[8] | Allayee H, Farber CR, Seldin MM, et al. Systems genetics approaches for understanding complex traits with relevance for human disease[J]. Elife, 2023, 12: e91004. doi:10.7554/elife.91004. |
[9] | 余琴, 梁丽艳, 刘超群, 等. 急性心肌梗死患者血清miR-133a、miR-499-5p表达与PCI术后冠状动脉无复流的关系[J]. 国际检验医学杂志, 2023, 44(9): 1059-1063. YU Qin, LIANG Liyan, LIU Chaoqun, et al. Relationship between serum miR-133 a, miR-499-5 p expression in patients with acute myocardial infarction and no coronary reflow after PCI[J]. International Journal of Laboratory Medicine, 2023, 44(9): 1059-1063. |
[10] | 郭丽婷, 郑辉. MicroRNAs在动脉粥样硬化发病机制中的调控作用[J]. 医学理论与实践, 2022, 35(13): 2188-2189. GUO Liting, ZHENG Hui. Regulatory role of microRNAs in the pathogenesis of atherosclerosis[J]. The Journal of Medical Theory and Practice, 2022, 35(13): 2188-2189. |
[11] | Chen L, Hu L, Zhu X, et al. MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated dendritic cell maturation via miR-155-5p/NFIA axis[J]. Cell Cycle, 2020, 19(19): 2472-2485. |
[12] | Chen S, Saeed AFUH, Liu Q, et al. Macrophages in immunoregulation and therapeutics[J]. Signal Transduct Target Ther, 2023, 22, 8(1): 207. |
[13] | Wang K, Bai X, Mei L, et al. CircRNA_0050486 promotes cell apoptosis and inflammation by targeting miR-1270 in atherosclerosis[J]. Ann Transl Med, 2022, 10(16): 905. |
[14] | Liu YZ, Zhang C, Jiang JF, et al. Angiopoietin-like proteins in atherosclerosis[J]. Clin Chim Acta, 2021, 521: 19-24. doi: 10.1016/j.cca.2021.06.024. |
[15] | Mazidi M, Wright N, Yao P, et al. Plasma proteomics to identify drug targets for ischemic heart disease[J]. J Am Coll Cardiol, 2023, 82(20): 1906-1920. |
[16] | Ehrlich KC, Lacey M, Ehrlich M. Tissue-specific epigenetics of atherosclerosis-related ANGPT and ANGPTL genes[J]. Epigenomics, 2019, 11(2): 169-186. |
[17] | Luo M, Peng D. ANGPTL8: an important regulator in metabolic disorders[J]. Front Endocrinol(Lausanne), 2018, 9: 169. doi: 10.3389/fendo.2018.00169. eCollection 2018. |
[18] | Xu F, Shen L, Yang Y, et al. Association between plasma levels of ANGPTL3, 4, 8 and the most common additional cardiovascular risk factors in patients with hypertension[J]. Diabetes Metab Syndr Obes, 2023, 16: 1647-1655. doi: 10.2147/DMSO.S411483. eCollection 2023. |
[19] | Thorin E, Labbé P, Lambert M, et al. Angiopoietin-like proteins: cardiovascular biology and therapeutic targeting for the prevention of cardiovascular diseases[J]. Can J Cardiol, 2023, 39(12): 1736-1756. |
[20] | 中国血脂管理指南修订联合专家委员会. 中国血脂管理指南(2023年)[J]. 中国循环杂志, 2023, 38(3): 237-271. |
[21] | 罗庭, 周小雁, 罗平, 等. 急性冠脉综合征患者血清ANGPTL3与炎症激活、糖脂代谢紊乱的相关性研究[J]. 中国循证心血管医学杂志, 2020, 12(10): 1251-1254. LUO Ting, ZHOU Xiaoyan, LUO Ping, et al. Correlation between serum ANGPTL3 and inflammatory activation and glucose and lipid metabolism disorders in patients with acute coronary syndrome[J]. Chinese Journal of Evidence-Based Cardiovascular Medicine, 2020, 12(10): 1251-1254. |
[22] | 蓝依婷, 陆兆华. 血管生成素样因子-7在心血管疾病中的研究进展[J]. 心血管病防治知识, 2022, 12(14): 91-94. LAN Yiting, LU Zhaohua. Research progress of angiopoietin-like factor-7 in cardiovascular diseases[J]. Prevention and Treatment of Cardiovascular Disease, 2022, 12(14): 91-94. |
[23] | Leentjens M, Alterki A, Abu-Farha M, et al. Increased plasma ANGPTL7 levels with increased obstructive sleep apnea severity[J]. Front Endocrinol(Lausanne), 2022, 13: 922425. doi: 10.3389/fendo.2022.922425. eCollection 2022. |
[24] | Qian T, Wang K, Cui J, et al. Angiopoietin-like protein 7 promotes an inflammatory phenotype in RAW264.7 macrophages through the P38 MAPK signaling pathway[J]. Inflammation, 2016, 39(3): 974-985. |
[25] | 刘岩, 张曼, 姜朝阳, 等. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J].山东大学学报(医学版), 2022, 60(6): 1-9. |
[26] | Procyk G, Grodzka O, Procyk M, et al. MicroRNAs in myocarditis-review of the preclinical in vivo trials[J]. Biomedicines, 2023, 11(10): 2723. |
[27] | Beňa cka R, Szabóová D, Gulašová Z, et al. Non-coding RNAs in human cancer and other diseases: overview of the diagnostic potential[J]. Int J Mol Sci, 2023, 24(22): 16213. |
[28] | Chen X, Yang Y, Sun J, et al. LncRNA HCG11 represses ovarian cancer cell growth via AKT signaling pathway[J]. J Obstet Gynaecol Res, 2022, 48(3): 796-805. |
[29] | 陈煜. PTEN与动脉粥样硬化[J]. 临床与病理杂志, 2023, 43(4): 836-841. CHEN YU. PTEN and atherosclerosis[J]. Journal of Clinical and Pathological Research, 2023, 43(4): 836-841. |
[1] | 许天旗,常娜,张帅,李莎,矫秉轩,于鑫鑫,王锡明. 非酒精性脂肪肝识别基于CTA颈动脉高危斑块[J]. 山东大学学报 (医学版), 2023, 61(12): 36-43. |
[2] | 杨元凤,熊高才,黎豫川,罗玉玲,张敬杰. 鹿苓安肾颗粒对慢性肾功能衰竭大鼠炎症反应及细胞凋亡的影响[J]. 山东大学学报 (医学版), 2023, 61(10): 9-16. |
[3] | 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13. |
[4] | 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88. |
[5] | 刘岩,张曼,姜朝阳,卞姝,杜艾家,陈鹤. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J]. 山东大学学报 (医学版), 2022, 60(6): 1-9. |
[6] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
[7] | 谢佳莹,祁佳,宋铭,李育林,王迪,贾旭,张薇,钟明,尚嫄嫄. 血清蛋白质β-折叠水平与冠心病的相关性[J]. 山东大学学报 (医学版), 2022, 60(1): 21-26. |
[8] | 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21. |
[9] | 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9. |
[10] | 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7. |
[11] | 高金梅,黄映波,冯珍珍. 单核细胞趋化蛋白-1对67例全身炎症反应综合征患者的诊断价值[J]. 山东大学学报 (医学版), 2021, 59(10): 77-81. |
[12] | 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31. |
[13] | 金海燕,张炎,马小莉,韩羽,赵蕙琛,刘元涛,张玉超. MiR-122与miR-33a在2型糖尿病合并冠心病患者中的表达[J]. 山东大学学报 (医学版), 2020, 58(3): 94-98. |
[14] | 娄福臣,刘性祥,马国云,庄向华. 阿卡波糖对冠心病合并糖耐量受损患者YKL-40和肠道菌群的影响[J]. 山东大学学报 (医学版), 2019, 57(7): 86-91. |
[15] | 郭配,李秀华,张晓韬,何天齐,朱梅佳,唐吉友,赵张宁,毛飞. 伴有睡眠障碍帕金森病患者的睡眠特征及其影响因素[J]. 山东大学学报 (医学版), 2018, 56(4): 76-80. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|