山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (9): 65-76.doi: 10.6040/j.issn.1671-7554.0.2025.0310
• 综述 • 上一篇
李雪凯1,孙淋涵1,刘端瑞2,倪阳1
LI Xuekai1, SUN Linhan1, LIU Duanrui2, NI Yang1
摘要: 乳酸化修饰作为一种新型蛋白质翻译后修饰是表观遗传调控的主要机制之一,可以影响蛋白质的结构、功能、活性以及稳定性。乳酸化修饰为更好地理解细胞代谢重编程与表观遗传调控之间的联系提供了新视角。最近越来越多的研究发现乳酸化修饰通过参与炎癌进程、促进炎癌转化和免疫抑制,调控肿瘤的增殖和耐药,并与肿瘤临床不良预后密切相关。阐明乳酸化修饰的分子机制,不仅能为肿瘤治疗提供新的视角和策略,还能推动乳酸研究从基础实验向临床应用的转化。本文综述了乳酸代谢和乳酸化修饰在肿瘤炎癌进程中的作用及机制,突出其在胃肠道、肝脏等多种肿瘤的炎癌进程中发挥的关键作用,这些发现为探索肿瘤发生发展机制及新治疗靶点提供了重要参考。
中图分类号:
| [1] Ye CS, Chong W, Liu Y, et al. Suppression of tumorigenesis in LUAD by LRP1B through regulation of the IL-6-JAK-STAT3 pathway[J]. Am J Cancer Res, 2023, 13(7): 2886-2905. [2] Guo Q, Jin YZ, Chen XY, et al. NF-κB in biology and targeted therapy: new insights and translational implications[J]. Signal Transduct Target Ther, 2024, 9(1): 53. doi: 10.1038/s41392-024-01757-9 [3] Hu Y, He ZL, Li ZJ, et al. Lactylation: the novel histone modification influence on gene expression, protein function, and disease[J]. Clin Epigenetics, 2024, 16(1): 72. doi: 10.1186/s13148-024-01682-2 [4] 袁鑫, 史宏硕, 樊炜静, 等. 组蛋白乳酸化调控巨噬细胞功能促进炎症微环境修复的研究进展[J]. 海南医学院学报, 2024, 30(15): 1180-1186. YUAN Xin, SHI Hongshuo, FAN Weijing, et al. Research progress in the regulation of macrophage function and promotion of inflammation microenvironment repaired by histone lactylation[J]. Journal of Hainan Medical University, 2024, 30(15): 1180-1186. [5] Qu JX, Li PZ, Sun ZH. Histone lactylation regulates cancer progression by reshaping the tumor microenvironment[J]. Front Immunol, 2023, 14: 1284344. doi: 10.3389/fimmu.2023.1284344 [6] Nengroo MA, Verma A, Datta D. Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications[J]. Cytokine, 2022, 156: 155916. doi: 10.1016/j.cyto.2022.155916 [7] Zhou C, Li WX, Liang ZX, et al. Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death[J]. Nat Commun, 2024, 15(1): 499. doi: 10.1038/s41467-024-44779-1 [8] Jacoberger-Foissac C, Cousineau I, Bareche Y, et al. CD73 inhibits cGAS-STING and cooperates with CD39 to promote pancreatic cancer[J]. Cancer Immunol Res, 2023, 11(1): 56-71. [9] Fan HQ, Yang F, Xiao ZH, et al. Lactylation: novel epigenetic regulatory and therapeutic opportunities[J]. Am J Physiol Endocrinol Metab, 2023, 324(4): 330-338. [10] Lv X, Lv Y, Dai X. Lactate, histone lactylation and cancer hallmarks[J]. Expert Rev Mol Med, 2023, 25: e7. doi: 10.1017/erm.2022.42 [11] Hou XC, Ouyang JW, Tang L, et al. KCNK1 promotes proliferation and metastasis of breast cancer cells by activating lactate dehydrogenase A(LDHA)and up-regulating H3K18 lactylation[J]. PLoS Biol, 2024, 22(6): e3002666. doi: 10.1371/journal.pbio.3002666 [12] Chen JJ, Zhu YF, Wu CT, et al. Engineering lactate-modulating nanomedicines for cancer therapy[J]. Chem Soc Rev, 2023, 52(3): 973-1000. [13] Cheng Q, Shi XL, Li QL, et al. Current advances on nanomaterials interfering with lactate metabolism for tumor therapy[J]. Adv Sci(Weinh), 2024, 11(3): e2305662. doi: 10.1002/advs.202305662 [14] Yang K, Fan M, Wang XH, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis[J]. Cell Death Differ, 2022, 29(1): 133-146. [15] Mao YZ, Zhang JJ, Zhou Q, et al. Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphory-lation[J]. Cell Res, 2024, 34(1): 13-30. [16] Zhao YH, Zhang MT, Huang XW, et al. Lactate modulates zygotic genome activation through H3K18 lactylation rather than H3K27 acetylation[J]. Cell Mol Life Sci, 2024, 81(1): 298. doi: 10.1007/s00018-024-05349-2 [17] Liu RL, Ren XL, Park YE, et al. Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis[J]. Cell Metab, 2025, 37(2): 377-394. [18] 匡贤栋, 蔡馨, 汤冬玲, 等. 组蛋白乳酸化与疾病关系研究进展 [J]. 检验医学, 2024, 39(7): 704-708. KUANG Xiandong, CAI Xin, TANG Dongling, et al. Research progress on relationship between histone lactation and disease [J]. Laboratory Medicine, 2024, 39(7): 704-708. [19] 冯丹, 李佳, 闫雨帆, 等. 乳酸化及2-羟基异丁酰化修饰在肿瘤中的研究进展[J]. 肿瘤学杂志, 2024, 30(9): 780-785. FENG Dan, LI Jia, YAN Yufan, et al. Research Progress on Lactylation and 2-Hydroxyisobutyrylation in Tumor[J]. Journal of Chinese Oncology, 2024, 30(9): 780-785. [20] Wang HM, Wu X, Yu S, et al. Lactate promotes the epithelial-mesenchymal transition of liver cancer cells via TWIST1 lactylation[J]. Exp Cell Res, 2025, 447(1): 114474. doi: 10.1016/j.yexcr.2025.114474 [21] Sun P, Ma LN, Lu ZM. Lactylation: Linking the Warburg effect to DNA damage repair[J]. Cell Metab, 2024, 36(8): 1637-1639. [22] Lu Y, Li XY, Zhao K, et al. Global landscape of 2-hydroxyisobutyrylation in human pancreatic cancer[J]. Front Oncol, 2022, 12: 1001807. doi: 10.3389/fonc.2022.1001807 [23] Song F, Hou C, Huang YZ, et al. Lactylome analyses suggest systematic lysine-lactylated substrates in oral squamous cell carcinoma under normoxia and hypoxia[J]. Cell Signal, 2024, 120: 111228. doi: 10.1016/j.cellsig.2024.111228 [24] Zhou JM, Xu WQ, Wu YB, et al. GPR37 promotes colorectal cancer liver metastases by enhancing the glycolysis and histone lactylation via Hippo pathway[J]. Oncogene, 2023, 42(45): 3319-3330. [25] Ghimire K, Awasthi BP, Yadav K, et al. Prostate cancer-selective anticancer action of an oxindole derivative via HO-1-mediated disruption of metabolic reprogramming[J]. Chem Biol Interact, 2025, 408: 111393. doi: 10.1016/j.cbi.2025.111393 [26] Ma J, To SKY, Fung KSW, et al. P-cadherin mechanoactivates tumor-mesothelium metabolic coupling to promote ovarian cancer metastasis[J]. Cell Rep, 2025, 44(1): 115096. doi: 10.1016/j.celrep.2024.115096 [27] Behera MM, Purkait S, Ghosh A, et al. The monocarboxylate transporters MCT1 and MCT4 are highly expressed in glioblastoma and crucially implicated in the pathobiology[J]. Neuropathology, 2025. doi: 10.1111/neup.70006 [28] Xie B, Lin JT, Chen XW, et al. CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer[J]. Mol Cancer, 2023, 22(1): 151. doi: 10.1186/s12943-023-01856-1 [29] Zhou Y, Yang L, Liu XY, et al. Lactylation may be a novel posttranslational modification in inflammation in neonatal hypoxic-ischemic encephalopathy[J]. Front Pharmacol, 2022, 13: 926802. doi: 10.3389/fphar.2022.926802 [30] Xu BJ, Liu Y, Li N, et al. Lactate and lactylation in macrophage metabolic reprogramming: current progress and outstanding issues[J]. Front Immunol, 2024, 15: 1395786. doi: 10.3389/fimmu.2024.1395786 [31] Wei YY, Lan BD, Zheng T, et al. GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis[J]. Nat Commun, 2023, 14(1): 929. doi: 10.1038/s41467-023-36614-w [32] Shu M, Lu DC, Zhu ZY, et al. Insight into the roles of lactylation in macrophages: functions and clinical implications[J]. Clin Sci(Lond), 2025, 139(2): 151-169. [33] Pajk B, Zieliński R, Priebe W. The impact of glycolysis and its inhibitors on the immune response to inflammation and autoimmunity[J]. Molecules, 2024, 29(6): 1298. doi: 10.3390/molecules29061298 [34] Ma W, Ao SX, Zhou JP, et al. Methylsulfonylmethane protects against lethal dose MRSA-induced sepsis through promoting M2 macrophage polarization[J]. Mol Immunol, 2022, 146: 69-77. doi: 10.1016/j.molimm.2022.04.001 [35] Brescia C, Audia S, Pugliano A, et al. Metabolic drives affecting Th17/Treg gene expression changes and diffe-rentiation: impact on immune-microenvironment regulation[J]. APMIS, 2024, 132(12): 1026-1045. [36] Akhter N, Wilson A, Arefanian H, et al. Endoplasmic reticulum stress promotes the expression of TNF-α in THP-1 cells by mechanisms involving ROS/CHOP/HIF-1α and MAPK/NF-κB pathways[J]. Int J Mol Sci, 2023, 24(20): 15186. doi: 10.3390/ijms242015186 [37] Demkow U. Molecular mechanisms of neutrophil extracellular trap(NETs)degradation[J]. Int J Mol Sci, 2023, 24(5): 4896. doi: 10.3390/ijms24054896 [38] Sim HB, Sang Son J, Gupta SK, et al. Development of Hsp90 inhibitor to regulate cytokine storms in excessive delayed- and acute inflammation[J]. Int Immuno-pharmacol, 2024, 137: 112470. doi: 10.1016/j.intimp.2024.112470 [39] Di Matteo A, Bathon JM, Emery P. Rheumatoid arthritis[J]. Lancet, 2023, 402(10416): 2019-2033. [40] Tie YZ, Huang YL, Chen RR, et al. Current insights on the roles of gut microbiota in inflammatory bowel disease-associated extra-intestinal manifestations: pathophysiology and therapeutic targets[J]. Gut Microbes, 2023, 15(2): 2265028. doi: 10.1080/19490976.2023.2265028 [41] Sun LH, Zhang Y, Yang BY, et al. Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer[J]. Nat Commun, 2023, 14: 6523. doi: 10.1038/s41467-023-42025-8 [42] Yang DW, Yin J, Shan LQ, et al. Identification of lysine-lactylated substrates in gastric cancer cells[J]. iScience, 2022, 25(7): 104630. doi: 10.1016/j.isci.2022.104630 [43] Zhang YJ, Li J, Wang B, et al. LDH-a negatively regulates dMMR in colorectal cancer[J]. Cancer Sci, 2021, 112(8): 3050-3063. [44] Liu H, Lou J, Liu YL, et al. Intestinal epithelial cell autophagy deficiency suppresses inflammation-associated colon tumorigenesis[J]. Mol Ther Nucleic Acids, 2022, 28: 35-46. doi: 10.1016/j.omtn.2022.02.012 [45] 戴瑶, 戴海燕, 笪文信, 等. p53蛋白乳酸化促进结肠癌细胞增殖和转移[J]. 江苏大学学报(医学版), 2023, 33(4): 303-309. DAI Yao, DAI Haiyan, DA Wenxin, et al. p53 lactylation promotes the proliferation and metastasis of colon cancer cells[J]. Journal of Jiangsu University(Medicine Edition), 2023, 33(4): 303-309. [46] Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells[J]. Mol Cell, 2022, 82(9): 1660-1677. [47] Chen BX, Deng YR, Hong YT, et al. Metabolic reco-ding of NSUN2-mediated m5C modification promotes the progression of colorectal cancer via the NSUN2/YBX1/m5C-ENO1 positive feedback loop[J]. Adv Sci(Weinh), 2024, 11(28): e2309840. doi: 10.1002/advs.202309840 [48] Yuan XL, Wang Q, Zhao J, et al. The m6A methyltransferase METTL3 modifies Kcnk6 promoting on inflammation associated carcinogenesis is essential for colon homeostasis and defense system through histone lactylation dependent YTHDF2 binding[J]. Int Rev Immunol, 2025, 44(1): 1-16. [49] Yang Z, Su W, Zhang QL, et al. Lactylation of HDAC1 confers resistance to ferroptosis in colorectal cancer[J]. Adv Sci(Weinh), 2025, 12(12): e2408845. doi: 10.1002/advs.202408845 [50] Liu HP, Ge BX. Lactylation as a post-translational regulator of cGAS and immunity[J]. Mol Cell, 2024, 84(23): 4483-4485. [51] Hao ZN, Tan XP, Zhang Q, et al. Lactate and lactylation: dual regulators of T-cell-mediated tumor immunity and immunotherapy[J]. Biomolecules, 2024, 14(12): 1646. doi: 10.3390/biom14121646 [52] 韩磊, 陆玉成, 韦志永, 等. 组蛋白乳酸化修饰在结直肠癌发展中作用的研究进展[J]. 中国病理生理杂志, 2024, 40(4): 735-741. HAN Lei, LU Yucheng, WEI Zhiyong, et al. Progress in role of histone lactylation in development of colorectal cancer[J]. Chinese Journal of Pathophysiology, 2024, 40(4): 735-741. [53] Tang M, Xu H, Huang HY, et al. Metabolism-based molecular subtyping endows effective ketogenic therapy in p53-mutant colon cancer[J]. Adv Sci(Weinh), 2022, 9(29): e2201992. doi: 10.1002/advs.202201992 [54] Zhu YY, Li X. Advances of Wnt signalling pathway in colorectal cancer[J]. Cells, 2023, 12(3): 447. doi: 10.3390/cells12030447 [55] Lopez Krol A, Nehring HP, Krause FF, et al. Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17 cells[J]. EMBO Rep, 2022, 23(12): e54685. doi: 10.15252/embr.202254685 [56] Li WH, Zhou C, Yu L, et al. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation(H3K18la)in colorectal cancer[J]. Autophagy, 2024, 20(1): 114-130. [57] Hong H, Han HX, Wang L, et al. ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway[J]. Cell Death Differ, 2025, 32(4): 613-631. [58] Wang ZH, Liu ZW, Lv MX, et al. Novel histone modifications and liver cancer: emerging frontiers in epigenetic regulation[J]. Clin Epigenetics, 2025, 17(1): 30. doi: 10.1186/s13148-025-01838-8 [59] Liao JY, Chen ZY, Chang RZ, et al. CENPA functions as a transcriptional regulator to promote hepatocellular carcinoma progression via cooperating with YY1[J]. Int J Biol Sci, 2023, 19(16): 5218-5232. [60] Jin J, Bai L, Wang DY, et al. SIRT3-dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth[J]. EMBO Rep, 2023, 24(5): e56052. doi: 10.15252/embr.202256052 [61] 关铭悦, 刘爽, 张雪. 蛋白质乳酸化修饰调控疾病发生的研究进展[J]. 中国病理生理杂志, 2024, 40(4): 742-747. GUAN Mingyue,LIU Shuang,ZHANG Xue.Advances in regulation of disease development by protein lactylation modifications[J].Chinese Journal of Pathophysiology, 2024, 40(4): 742-747. [62] Moreno-Yruela C, Bæk M, Monda F, et al. Chiral posttranslational modification to lysine ε-amino groups[J]. Acc Chem Res, 2022, 55(10): 1456-1466. [63] Moreno-Yruela C, Zhang D, Wei W, et al. Class I histone deacetylases(HDAC1-3)are histone lysine delactylases[J]. Sci Adv, 2022, 8(3): eabi6696. doi: 10.1126/sciadv.abi6696 [64] Cheng Z, Huang HC, Li MY, et al. Lactylation-related gene signature effectively predicts prognosis and treatment responsiveness in hepatocellular carcinoma[J]. Pharmaceuticals(Basel), 2023, 16(5): 644. doi: 10.3390/ph16050644 [65] Wu XF. In-depth discovery of protein lactylation in hepatocellular carcinoma[J]. Proteomics, 2023, 23(9): e2300003. doi: 10.1002/pmic.202300003 [66] Niu KF, Chen ZX, Li MG, et al. NSUN2 lactylation drives cancer cell resistance to ferroptosis through enhancing GCLC-dependent glutathione synthesis[J]. Redox Biol, 2025, 79: 103479. doi: 10.1016/j.redox.2024.103479 [67] Huang JY, Xie HJ, Li J, et al. Histone lactylation drives liver cancer metastasis by facilitating NSF1-mediated ferroptosis resistance after microwave ablation[J]. Redox Biol, 2025, 81: 103553. doi: 10.1016/j.redox.2025.103553 [68] Wang XM, Ying TX, Yuan JM, et al. BRAFV600E restructures cellular lactylation to promote anaplastic thyroid cancer proliferation[J]. Endocr Relat Cancer, 2023, 30(8): e220344. doi: 10.1530/ERC-22-0344 [69] Li F, Zhang HH, Huang Y, et al. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer[J]. Drug Resist Updat, 2024, 73: 101059. doi: 10.1016/j.drup.2024.101059 [70] Hong H, Chen X, Wang HG, et al. Global profiling of protein lysine lactylation and potential target modified protein analysis in hepatocellular carcinoma[J]. Proteomics, 2023, 23(9): e2200432. doi: 10.1002/pmic.202200432 [71] Pan LH, Feng F, Wu JQ, et al. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells[J]. Pharmacol Res, 2022, 181: 106270. doi: 10.1016/j.phrs.2022.106270 [72] He YM, Ji ZZ, Gong YM, et al. Numb/Parkin-directed mitochondrial fitness governs cancer cell fate via metabolic regulation of histone lactylation[J]. Cell Rep, 2023, 42(2): 112033. doi: 10.1016/j.celrep.2023.112033 [73] Jiang J, Huang DL, Jiang Y, et al. Lactate modulates cellular metabolism through histone lactylation-mediated gene expression in non-small cell lung cancer[J]. Front Oncol, 2021, 11: 647559. doi: 10.3389/fonc.2021.647559 [74] Díaz-Gago S, Vicente-Gutiérrez J, Ruiz-Rodríguez JM, et al. Autophagy sustains mitochondrial respiration and determines resistance to BRAFV600E inhibition in thyroid carcinoma cells[J]. Autophagy, 2024, 20(6): 1383-1397. [75] Chaudagar K, Hieromnimon HM, Kelley A, et al. Suppression of tumor cell lactate-generating signaling pathways eradicates murine PTEN/p53-deficient aggressive-variant prostate cancer via macrophage phagocytosis[J]. Clin Cancer Res, 2023, 29(23): 4930-4940. [76] Luo YW, Yang ZH, Yu Y, et al. HIF1α lactylation enhances KIAA1199 transcription to promote angiogenesis and vasculogenic mimicry in prostate cancer[J]. Int J Biol Macromol, 2022, 222(B): 2225-2243. [77] Yang JF, Luo L, Zhao CY, et al. A positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression[J]. Int J Biol Sci, 2022, 18(8): 3470-3483. [78] Li XM, Yang Y, Jiang FQ, et al. Histone lactylation inhibits RARγ expression in macrophages to promote colorectal tumorigenesis through activation of TRAF6-IL-6-STAT3 signaling[J]. Cell Rep, 2024, 43(2): 113688. doi: 10.1016/j.celrep.2024.113688 [79] Chaudagar K, Hieromnimon HM, Khurana R, et al. Reversal of lactate and PD-1-mediated macrophage immunosuppression controls growth of PTEN/p53-deficient prostate cancer[J]. Clin Cancer Res, 2023, 29(10): 1952-1968. [80] 张其程, 曹丽敏, 徐克. 乳酸化修饰在癌症中的研究进展[J]. 中国肺癌杂志, 2024, 27(6): 471-479. ZHANG Qicheng, CAO Limin, XU Ke. Role and Mechanism of Lactylation in Cancer[J]. Chinese Journal of Lung Cancer, 2024, 27(6): 471-479. [81] Zheng PD, Mao ZY, Luo M, et al. Comprehensive bioinformatics analysis of the solute carrier family and preliminary exploration of SLC25A29 in lung adenocarcinoma[J]. Cancer Cell Int, 2023, 23(1): 222. doi: 10.1186/s12935-023-03082-7 [82] Yan F, Teng Y, Li XY, et al. Hypoxia promotes non-small cell lung cancer cell stemness, migration, and invasion via promoting glycolysis by lactylation of SOX9[J]. Cancer Biol Ther, 2024, 25(1): 2304161. doi: 10.1080/15384047.2024.2304161 [83] Chen J, Huang ZY, Chen Y, et al. Lactate and lactylation in cancer[J]. Signal Transduct Target Ther, 2025, 10(1): 38. doi: 10.1038/s41392-024-02082-x [84] Huang ZW, Zhang XN, Zhang L, et al. STAT5 promotes PD-L1 expression by facilitating histone lactylation to drive immunosuppression in acute myeloid leukemia[J]. Signal Transduct Target Ther, 2023, 8(1): 391. doi: 10.1038/s41392-023-01605-2 [85] Sun T, Liu B, Li YY, et al. Oxamate enhances the efficacy of CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8 lactylation[J]. J Exp Clin Cancer Res, 2023, 42(1): 253. doi: 10.1186/s13046-023-02815-w [86] Wang WH, Fu FQ, Huang ZW, et al. Inhalable biomimetic protein Corona-mediated nanoreactor for self-amplified lung adenocarcinoma ferroptosis therapy[J]. ACS Nano, 2022, 16(5): 8370-8387. [87] Combs JE, Murray AB, Lomelino CL, et al. Disruption of the physical interaction between carbonic anhydrase IX and the monocarboxylate transporter 4 impacts lactate transport in breast cancer cells[J]. Int J Mol Sci, 2024, 25(22): 11994. doi: 10.3390/ijms252211994 [88] Rong Y, Dong FY, Zhang GQ, et al. The crosstalking of lactate-Histone lactylation and tumor[J]. Proteomics Clin Appl, 2023, 17(5): e2200102. doi: 10.1002/prca.202200102 [89] Aria H, Rezaei M, Nazem S, et al. Purinergic receptors are a key bottleneck in tumor metabolic reprogramming: The prime suspect in cancer therapeutic resistance[J]. Front Immunol, 2022, 13: 947885. doi: 10.3389/fimmu.2022.947885 [90] Sun YN, Chen YC, Peng T. A bioorthogonal chemical reporter for the detection and identification of protein lactylation[J]. Chem Sci, 2022, 13(20): 6019-6027. [91] Yang ZJ, Yan C, Ma JQ, et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma[J]. Nat Metab, 2023, 5(1): 61-79. [92] Wan N, Wang N, Yu SQ, et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome[J]. Nat Methods, 2022, 19(7): 854-864. |
| [1] | 王伟 王沂峰 张岭梅 林琼燕 黄菊. 人卵巢癌OVCAR3细胞系中侧群细胞的分离及其成瘤性、侵袭性的实验研究[J]. 山东大学学报(医学版), 2209, 47(6): 8-11. |
| [2] | 李波波 李道堂 刘曙光 王兴武. 食管癌患者血清中DKK-1的表达[J]. 山东大学学报(医学版), 2209, 47(6): 58-61. |
| [3] | 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-. |
| [4] | 巩性军,吴树明,张供,李守先,庞昕焱. 无顶冠状静脉窦综合征的诊断和外科治疗[J]. 山东大学学报(医学版), 2209, 47(6): 129-. |
| [5] | 黄方 康瑞 吴春林. VEGFC、NF-κBp65及Survivin在鼻咽癌中的表达及临床意义[J]. 山东大学学报(医学版), 2209, 47(6): 83-. |
| [6] | 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19. |
| [7] | 王雪梅,杨豪,宋洋,程世超,张婷婷,王艳春. 抗糖尿病药物与女性恶性肿瘤的因果关联:一项两样本孟德尔随机化分析[J]. 山东大学学报 (医学版), 2025, 63(6): 67-77. |
| [8] | 国科,陈绪军,郑宝石,施超,黄克力,曹勇,陈军,吴东凯,张晓慎,罗俊辉,申林,莫绪明,杨岷,王晓武,雷印胜,田茂州,王振东,孟自力,孙忠东,李有金,陆辉辉,孟春营,高峰,陈黔苏,郭能瑞,柳德斌,张楠,林宇,陈文生,宋保国,方智,王海晨,廖晓波,徐朝军. 快通道拔管在全动脉冠脉旁路移植术的多中心临床效果[J]. 山东大学学报 (医学版), 2025, 63(5): 26-32. |
| [9] | 赵汉卿,周新睿,李子建,唐兴. 循环肿瘤细胞联合血清学检测在非小细胞肺癌中的应用[J]. 山东大学学报 (医学版), 2025, 63(5): 79-85. |
| [10] | 杜雪,李春霞,刘云霞,张涛. 基于MFPC-Cox的结直肠癌患者预后动态预测模型[J]. 山东大学学报 (医学版), 2025, 63(5): 101-110. |
| [11] | 黄馨,王梦雪,付书璠,张琦悦,徐力. 代谢综合征及其组分与消化系统恶性肿瘤的因果关联:两样本孟德尔随机化研究[J]. 山东大学学报 (医学版), 2025, 63(5): 86-94. |
| [12] | 王宝炫,焦杰,张厚君,刘奇,于冠英. 衰弱与肌少症评估在胃肠道肿瘤术后结局预测中的应用与展望[J]. 山东大学学报 (医学版), 2025, 63(4): 51-58. |
| [13] | 赵芸慕兰,高海燕. 中、高危分化型甲状腺癌患者术后 131I治疗反应及预后的影响因素[J]. 山东大学学报 (医学版), 2025, 63(2): 21-28. |
| [14] | 刘晶晶,庞婧,赵晓丹,林昕,付敏,陈静静. 基于乳腺X线摄影及DCE-MRI机器学习模型预测乳腺癌新辅助治疗后病理完全缓解:双中心研究[J]. 山东大学学报 (医学版), 2025, 63(1): 60-72. |
| [15] | 山东省医学会乳腺疾病多学科联合委员会. 乳腺癌多学科协作诊疗山东共识(2024年版)[J]. 山东大学学报 (医学版), 2025, 63(1): 10-16. |
|
||