您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (7): 21-32.doi: 10.6040/j.issn.1671-7554.0.2024.0114

• 呼吸系统疾病精准诊疗专题 • 上一篇    下一篇

基于机器学习算法鉴定哮喘的坏死性凋亡相关生物标志物

王静1,刘晓菲2,曾荣3,许长娟2,张锦涛2,董亮2,3   

  1. 1.吴忠市人民医院呼吸与危重症医学Ⅰ科, 宁夏 吴忠 751199;2.山东第一医科大学第一附属医院(山东省千佛山医院)呼吸与危重症医学科 山东省呼吸疾病研究所, 山东 济南 250014;3.山东大学 山东省千佛山医院呼吸与危重症医学科, 山东 济南 250014
  • 发布日期:2024-09-20
  • 通讯作者: 董亮. E-mail:dl5506@126.com
  • 基金资助:
    国家自然科学基金项目(82270032);山东省重点研发计划项目(2021SFGC0504);山东省自然科学基金联合基金项目(ZR2021LSW015)

Identification of necroptosis-related biomarkers in asthma based on machine learning algorithms

WANG Jing1, LIU Xiaofei2, ZENG Rong3, XU Changjuan2, ZHANG Jintao2, DONG Liang2,3   

  1. 1. Department of Respiratory Ⅰ, Wuzhong Peoples Hospital, Wuzhong 751199, Ningxia, China;
    2. Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University &
    Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory, Jinan 250014, Shandong, China;
    3. Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China
  • Published:2024-09-20

摘要: 目的 通过生物信息学分析的方法识别和验证哮喘中潜在的坏死性凋亡相关基因(necroptosis-related genes, NRGs)。 方法 基因表达综合(Gene Expression Omnibus, GEO)数据库提供了基因表达谱数据集GSE76262,并使用R软件筛选潜在的差异表达NRGs。对差异表达的 NRGs进行蛋白质-蛋白质相互作用(protein-protein interaction, PPI)分析、基因本体论(gene ontology, GO)富集分析、京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)通路富集分析。通过最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)逻辑回归和支持向量机递归特征消除(support vector machine-recursive feature elimination, SVM-RFE)算法分析上调的NRGs。共同特征基因被确定为潜在的诊断标志物,并绘制受试者特征(receiver operator characteristic, ROC)曲线以验证其诊断效能。GSE137268进一步验证筛选出的特征基因的表达情况和诊断效能。使用在线工具预测可以靶向调控特征基因表达的微小RNAs(microRNAs, miRNAs)。 结果 在118例哮喘患者和21名健康对照者中鉴定出33个差异表达的 NRGs(13个上调和20个下调)。PPI结果提示20 个差异表达的 NRGs相互作用。GO和KEGG富集分析显示NRGs与多个信号通路、淋巴细胞激活、细胞凋亡和免疫调节等相关。LASSO和SVM-RFE筛选出 7 个上调的 NRGs 可作为潜在的诊断基因,其ROC曲线显示出较高的诊断效率,曲线下面积(area under the curve, AUC)高于0.7。经GSE137268验证,7个特征基因与训练集的表达趋势相同(AUC>0.65)。预测hsa-miR-138-5p、hsa-miR-200b-3p和hsa-miR-30e-5p可调控哮喘患者NRGs的表达。 结论 BIRC3、HIF1A、FLOT1、NLRP3、RIPK2、GBE1和PELI1为哮喘的潜在生物标志物。Hsa-miR-138-5p、hsa-miR-200b-3p和hsa-miR-30e-5p分别是HIF1A、RIPK2和PELI1的上游调节因子。

关键词: 坏死性凋亡, 哮喘, 生物信息学分析, 机器学习, 生物标志物

Abstract: Objective To identificate and validate of potential necroptosis-related genes(NRGs)in asthma through bioinformatics analysis. Methods The Gene Expression Omnibus(GEO)database provided the gene expression profile dataset GSE76262, and R software was used to screen for potential differentially expressed NRGs. Protein-protein interactions(PPI)analysis, gene ontology(GO)enrichment analysis, and Kyoto encyclopedia of genes and genomes(KEGG)pathway enrichment analysis were performed on the differentially expressed NRGs. The up-regulated NRGs were analyzed by least absolute shrinkage and selection operator(LASSO)logistic regression and support vector machine-recursive feature elimination(SVM-RFE)algorithms. Common signature genes were identified as potential diagnostic markers, and receiver operator characteristic(ROC)curves were drawn to verify their diagnostic efficacy. The expression and diagnostic efficacy of the screened signature genes were further confirmed by GSE137268. Online tools were used to predict microRNAs(miRNAs)that can target and regulate the expression of signature genes. Results Thirty-three differentially expressed NRGs(13 up-regulated and 20 down-regulated)were identified in 118 asthma patients and 21 healthy controls. The PPI results indicated that 20 differentially expressed NRGs interacting. GO and KEGG enrichment analyses revealed enrichment items related to multiple signaling pathways, lymphocyte activation, apoptosis, and immune regulation. LASSO and SVM-RFE showed that seven up-regulated NRGs could be potential diagnosis genes. The ROC curves showed high diagnostic efficiency with the area under the curve(AUC)higher than 0.7. GSE137268 verified that seven signature genes showed the same expression trend as the training set(AUC>0.65). Hsa-miR-138-5p, hsa-miR-200b-3p and hsa-miR-30e-5p were predicted to regulate the expression of necroptosis genes in asthmatic patients. Conclusion BIRC3, HIF1A, FLOT1, NLRP3, RIPK2, GBE1 and PELI1 can serve as potential biomarkers for asthma. Hsa-miR-138-5p, hsa-miR-200b-3p and hsa-miR-30e-5p are upstream regulators of HIF1A, RIPK2 and PELI1, respectively.

Key words: Necroptosis, Asthma, Bioinformatics analysis, Machine learning, Biomarkers

中图分类号: 

  • R562
[1] Global Initiative for Asthma. Global strategy for asthma management and prevention [EB/OL].(2024-01-20)[2024-05-07]. https://ginasthma.org/2024-report/.
[2] Reddel HK, Bacharier LB, Bateman ED, et al. Global initiative for asthma strategy 2021: executive summary and rationale for key changes[J]. Am J Respir Crit Care Med, 2022, 205(1): 17-35.
[3] Hammad H, Lambrecht BN. The basic immunology of asthma[J]. Cell, 2021, 184(6): 1469-1485.
[4] Garnish SE, Tovey Crutchfield EC, Murphy JM, et al. Add necroptosis to your asthma action plan[J]. Immunol Cell Biol, 2021, 99(8): 800-802.
[5] Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways[J]. Nat Rev Mol Cell Biol, 2014, 15(2): 135-147.
[6] Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation[J]. Nature, 2015, 517(7534): 311-320.
[7] Green DR. The coming decade of cell death research: five riddles[J]. Cell, 2019, 177(5): 1094-1107.
[8] Seo J, Nam YW, Kim S, et al. Necroptosis molecular mechanisms: recent findings regarding novel necroptosis regulators[J]. Exp Mol Med, 2021, 53(6): 1007-1017.
[9] Faust H, Mangalmurti NS. Collateral damage: necroptosis in the development of lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(2): L215-L225.
[10] Zhang T, Yin CR, Boyd DF, et al. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis[J]. Cell, 2020, 180(6): 1115-1129.
[11] Baines KJ, Simpson JL, Wood LG, et al. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples[J]. J Allergy Clin Immunol, 2011, 127(1): 153-160.
[12] Kuo CS, Pavlidis S, Loza M, et al. T-helper cell type 2(Th2)and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED[J]. Eur Respir J, 2017, 49(2): 1602135. doi:10.1183/13993003.02135-2016.
[13] Baines KJ, Fricker M, McDonald VM, et al. Sputum transcriptomics implicates increased p38 signalling activity in severe asthma[J]. Respirology, 2020, 25(7): 709-718.
[14] Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures[J]. Bioinformatics, 2003, 19(3): 368-375.
[15] Sun SL, Shen YH, Wang J, et al. Identification and validation of autophagy-related genes in chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 67-78. doi:10.2147/COPD.S288428.
[16] Chen D, Wu WL, Yi LL, et al. A potential circRNA-miRNA-mRNA regulatory network in asthmatic airway epithelial cells identified by integrated analysis of microarray datasets[J]. Front Mol Biosci, 2021, 8: 703307. doi:10.3389/fmolb.2021.703307.
[17] Khan I, Yousif A, Chesnokov M, et al. A decade of cell death studies: breathing new life into necroptosis[J]. Pharmacol Ther, 2021, 220: 107717. doi:10.1016/j.pharmthera.2020.107717.
[18] Lu Z, van Eeckhoutte HP, Liu G, et al. Necroptosis signaling promotes inflammation, airway remodeling, and emphysema in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2021, 204(6): 667-681.
[19] Oikonomou N, Schuijs MJ, Chatzigiagkos A, et al. Airway epithelial cell necroptosis contributes to asthma exacerbation in a mouse model of house dust mite-induced allergic inflammation[J]. Mucosal Immunol, 2021, 14(5): 1160-1171.
[20] Miller MH, Shehat MG, Alcedo KP, et al. Frontline Science: RIP2 promotes house dust mite-induced allergic airway inflammation[J]. J Leukoc Biol, 2018, 104(3): 447-459.
[21] Ait Yahia S, Audousset C, Alvarez-Simon D, et al. NOD1 sensing of house dust mite-derived microbiota promotes allergic experimental asthma[J]. J Allergy Clin Immunol, 2021, 148(2): 394-406.
[22] Robert T. Regression shrinkage and selection via the lasso[J]. J R Stat Soc Ser B Methodol, 2018, 58(1): 267-288.
[23] Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines[J]. Mach Learn, 2002, 46(1): 389-422.
[24] Du LJ, Xu CY, Zeng ZM, et al. Exploration of induced sputum BIRC3 levels and clinical implications in asthma[J]. BMC Pulm Med, 2022, 22(1): 86. doi:10.1186/s12890-022-01887-2.
[25] Huerta-Yepez S, Baay-Guzman GJ, Bebenek IG, et al. Hypoxia inducible factor promotes murine allergic airway inflammation and is increased in asthma and rhinitis[J]. Allergy, 2011, 66(7): 909-918.
[26] Li HT, Ye C, Zhou M, et al. Moxifloxacin suppresses airway inflammation and modulates expression of caveolin-1 and flotillin-1 in airway smooth muscle cells of asthmatic rats[J]. Ann Transl Med, 2019, 7(18): 469. doi:10.21037/atm.2019.08.43.
[27] Williams EJ, Negewo NA, Baines KJ. Role of the NLRP3 inflammasome in asthma: relationship with neutrophilic inflammation, obesity, and therapeutic options[J]. J Allergy Clin Immunol, 2021, 147(6): 2060-2062.
[28] Kim HY, Lee HJ, Chang YJ, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity[J]. Nat Med, 2014, 20(1): 54-61.
[29] Ma M, Li GY, Qi MH, et al. Inhibition of the inflammasome activity of NLRP3 attenuates HDM-induced allergic asthma[J]. Front Immunol, 2021, 12: 718779. doi:10.3389/fimmu.2021.718779.
[30] Tan HT, Hagner S, Ruchti F, et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice[J]. Allergy, 2019, 74(2): 294-307.
[31] Li LF, Yang L, Cheng SQ, et al. Lung adenocarcinoma-intrinsic GBE1 signaling inhibits anti-tumor immunity[J]. Mol Cancer, 2019, 18(1): 108. doi:10.1186/s12943-019-1027-x.
[32] Liang YC, Lei YY, Liang M, et al. GBE1 is an independent prognostic marker and associated with CD163+ tumor-associated macrophage infiltration in lung adenocarcinoma[J]. Front Oncol, 2021, 11: 781344. doi:10.3389/fonc.2021.781344.
[33] Wei WP, Huang JQ, Ma Y, et al. IL-1 signaling pathway molecules as key markers in childhood asthma[J]. Pediatr Allergy Immunol, 2021, 32(2): 305-313.
[34] Chen L, Heikkinen L, Wang CL, et al. Trends in the development of miRNA bioinformatics tools[J]. Brief Bioinform, 2019, 20(5): 1836-1852.
[35] Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res, 2014, 42(Database issue): D92-D97.
[36] Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs[J]. Elife, 2015, 4: e05005. doi:10.7554/eLife.05005.
[37] Chen YH, Wang XW. miRDB: an online database for prediction of functional microRNA targets[J]. Nucleic Acids Res, 2020, 48(D1): D127-D131.
[38] Kang JJ, Tang Q, He J, et al. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility[J]. Nucleic Acids Res, 2022, 50(D1): D326-D332.
[39] Tang HP, Han XL, Li TT, et al. Protective effect of miR-138-5p inhibition modified human mesenchymal stem cell on ovalbumin-induced allergic rhinitis and asthma syndrome[J]. J Cell Mol Med, 2021, 25(11): 5038-5049.
[40] Liu F, Zhang J, Zhang D, et al. Follistatin-related protein 1 in asthma: miR-200b-3p interactions affect airway remodeling and inflammation phenotype[J]. Int Immunopharmacol, 2022, 109: 108793. doi: 10.1016/j.intimp.2022.108793.
[41] Kim BS, Jung JY, Jeon JY, et al. Circulating hsa-miR-30e-5p, hsa-miR-92a-3p, and hsa-miR-223-3p may be novel biomarkers in systemic lupus erythematosus [J]. HLA, 2016, 8(4): 187-193.
[1] 郭振江,王宁,赵光远,杜立强,崔朝勃,刘防震. 基于机器学习建立术前预测近端胃癌食管切缘阳性模型[J]. 山东大学学报 (医学版), 2024, 62(7): 78-83.
[2] 闫金燕,杨春,李雷,吴福玲,焦永莉,张晓蔚,李晶,张瑞珍,王磊,马香. 山东省儿童百日咳感染与哮喘的相关性[J]. 山东大学学报 (医学版), 2024, 62(7): 33-41.
[3] 孙丛丛,崔文静,张锦涛,张东,刘晓菲,潘云,亓倩,徐嘉蔚,曾荣,郭红喜,董亮. 铁死亡在支气管哮喘气道重塑中的作用[J]. 山东大学学报 (医学版), 2024, 62(7): 1-9.
[4] 徐芳,田国雄,孙倍倍,陈馨怡,陈高莹,张睿琦,应颂敏,吴妙莲,张超,吴优倩. 重度哮喘的生物与细胞疗法研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 35-42.
[5] 申永春,文富强. 线粒体损伤相关分子模式作为慢性阻塞性肺疾病生物标志物的研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 16-20.
[6] 丁伊人,刘婉莹,姚蕾,姚欣. 大环内酯类抗生素治疗哮喘的研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 21-27.
[7] 王婷,张丽,王刚. 神经心理性哮喘[J]. 山东大学学报 (医学版), 2024, 62(5): 28-34.
[8] 石硕川,曾荣,张锦涛,张东,潘云,刘晓菲,许长娟,王莹,董亮. 基于生物信息学探索支气管哮喘中的潜在差异免疫基因和免疫浸润特征[J]. 山东大学学报 (医学版), 2024, 62(5): 43-53.
[9] 冯绪梅,宋相庆,季冠虹,赵小刚,肖兆华. 血浆外泌体miR-548k在食管鳞癌中的表达及诊断价值[J]. 山东大学学报 (医学版), 2024, 62(5): 79-88.
[10] 张锦涛,董亮. 气道上皮及其源性细胞因子与哮喘:思考与展望[J]. 山东大学学报 (医学版), 2024, 62(5): 1-6.
[11] 梁永媛,蔡培飞,郑桂喜. 基于多检验变量和机器学习算法的结肠癌诊断模型建立及价值评估[J]. 山东大学学报 (医学版), 2024, 62(2): 51-59.
[12] 景凯,徐志伟,李乐平. 基于GEO数据库探究结直肠肿瘤相关基因及其功能[J]. 山东大学学报 (医学版), 2024, 62(1): 21-30.
[13] 张景慧,王娟,赵玉洁,段淼,刘毅然,林敏娟,谯旭,李真,左秀丽. 基于机器学习的胃肠道疾病舌诊模型构建[J]. 山东大学学报 (医学版), 2024, 62(1): 38-47.
[14] 秦金金,曹辰媛,邢杰杰,安燕,黄煜湘. 子痫前期相关Siglec-6核心基因的预测及生物信息学分析[J]. 山东大学学报 (医学版), 2024, 62(1): 31-37.
[15] 陈映均,刘同刚. 综合生物信息学分析鉴定乙型肝炎病毒相关肝细胞癌中异常甲基化修饰的差异表达基因[J]. 山东大学学报 (医学版), 2023, 61(9): 101-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!