您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (5): 1-6.doi: 10.6040/j.issn.1671-7554.0.2024.0121

• 慢性气道疾病的精准个体化诊疗——专家综述 •    

气道上皮及其源性细胞因子与哮喘:思考与展望

张锦涛,董亮   

  1. 山东第一医科大学第一附属医院呼吸与危重症医学科 山东省呼吸疾病研究所, 山东 济南 250014
  • 发布日期:2024-05-29
  • 通讯作者: 董亮. E-mail:dl5506@126.com
  • 基金资助:
    国家自然科学基金(82270032);山东省重点研发计划(2021SFGC0504);济南市呼吸疾病临床医学研究中心(202132002);中华国际医学交流基金会呼吸疾病青年实用研究项目(Z-2017-24-2301)

Airway epithelium and epithelial-derived cytokines in asthma: reflection and outlook

ZHANG Jintao, DONG Liang   

  1. Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Disease, Jinan 250014, Shandong, China
  • Published:2024-05-29

摘要: 气道上皮通过与免疫细胞的紧密互作精细调控并维持气道微环境的形成,在哮喘免疫病理进展过程中处于核心地位。气道上皮源性细胞因子被认为在触发和维持哮喘气道炎症中担任关键角色,成为目前哮喘新型药物研发的热门靶点。本文综述气道上皮及其源性细胞因子在哮喘中的作用及相关靶向药物研究进展,为相关研究提供新视角与新思考。

关键词: 气道上皮, 细胞因子, 哮喘, 靶向药物, 展望

Abstract: The airway epithelium plays a central role in the pathogenesis of asthma by tightly interacting with immune cells and finely regulating the formation of the airway microenvironment. Epithelial-derived cytokines have been recognized as key players in triggering and sustaining airway inflammation in asthma, making them attractive targets for the development of novel asthma drugs. This article provides an overview of the role of the airway epithelium and its derived cytokines in asthma, as well as the progress in research on targeted drugs, offering new perspectives and insights for related studies.

Key words: Airway epithelium, Cytokines, Asthma, Targeted medicine, Outlook

中图分类号: 

  • R562
[1] Albrecht M, Garn H, Buhl T. Epithelial-immune cell interactions in allergic diseases[J]. Eur J Immunol, 2024, 54(1): e2249982. doi: 10.1002/eji.202249982.
[2] Noureddine N, Chalubinski M, Wawrzyniak P. The role of defective epithelial barriers in allergic lung disease and asthma development[J]. J Asthma Allergy, 2022, 15: 487-504. doi: 10.2147/JAA.S324080.
[3] Chen CY, Wu KH, Guo BC, et al. Personalized medicine in severe asthma: from biomarkers to biologics[J]. Int J Mol Sci, 2023, 25(1): 182. doi: 10.3390/ijms25010182.
[4] Hellings PW, Steelant B. Epithelial barriers in allergy and asthma[J]. J Allergy Clin Immunol, 2020, 145(6): 1499-1509.
[5] Vieira Braga FA, Kar G, Berg M, et al. A cellular census of human lungs identifies novel cell states in health and in asthma[J]. Nat Med, 2019, 25(7): 1153-1163.
[6] Zhang N, Xu J, Jiang C, et al.Neuro-immune regulation in inflammation and airway remodeling of allergic asthma[J]. Front Immunol, 2022, 13: 894047. doi: 10.3389/fimmu.2022.894047.
[7] Kohanski MA, Workman AD, Patel NN, et al. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2018, 142(2): 460-469.e7.
[8] Waghray A, Monga I, Lin B, et al. A deep lung cell atlas reveals cytokine-mediated lineage switching of a rare cell progenitor of the human airway epithelium[J]. bioRxiv, 2023. doi: 10.1101/2023.11.28.569028.
[9] Gauvreau GM, Obyrne PM, Boulet LP, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses[J]. N Engl J Med, 2014, 370(22): 2102-2110.
[10] Barlow JL, Peel S, Fox J, et al. IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes(type 2 innate lymphoid cells)and airway contraction[J]. J Allergy Clin Immunol, 2013, 132(4): 933-941.
[11] Duchesne M, Okoye I, Lacy P. Epithelial cell alarmin cytokines: frontline mediators of the asthma inflammatory response[J]. Front Immunol, 2022, 13: 975914. doi: 10.3389/fimmu.2022.975914.
[12] Liu T, Liu Y, Miller M, et al. Autophagy plays a role in FSTL1-induced epithelial mesenchymal transition and airway remodeling in asthma[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(1): L27-L40.
[13] Zhang J, Zhang D, Pan Y, et al. The TL1A-DR3 axis in asthma: membrane-bound and secreted TL1A co-determined the development of airway remodeling[J]. Allergy Asthma Immunol Res, 2022, 14(2): 233-253.
[14] Liu F, Zhang J, Zhang D, et al. Follistatin-related protein 1 in asthma: miR-200b-3p interactions affect airway remodeling and inflammation phenotype[J]. Int Immunopharmacol, 2022, 109: 108793. doi: 10.1016/j.intimp.2022.108793.
[15] Guo Z, Wu J, Zhao J, et al. IL-33 promotes airway remodeling and is a marker of asthma disease severity[J]. J Asthma, 2014, 51(8): 863-869.
[16] Cao L, Liu F, Liu Y, et al. TSLP promotes asthmatic airway remodeling via p38-STAT3 signaling pathway in human lung fibroblast[J]. Exp Lung Res, 2018, 44(6): 288-301.
[17] Zhang J, Dong L. Status and prospects: personalized treatment and biomarker for airway remodeling in asthma[J]. J Thorac Dis, 2020, 12(10): 6090-6101.
[18] Andreasson LM, Dyhre-Petersen N, Hvidtfeldt M, et al. Airway hyperresponsiveness correlates with airway TSLP in asthma independent of eosinophilic inflammation[J]. J Allergy Clin Immunol, 2023: S0091-6749(23)02409-0. doi: 10.1016/j.jaci.2023.11.915.
[19] Chatziparasidis G, Bush A, Chatziparasidi MR, et al. Airway epithelial development and function: a key player in asthma pathogenesis?[J]. Paediatr Respir Rev, 2023, 47: 51-61. doi: 10.1016/j.prrv.2023.04.005.
[20] Frey A, Lunding LP, Ehlers JC, et al. More than just a barrier: the immune functions of the airway epithelium in asthma pathogenesis[J]. Front Immunol, 2020, 11: 761. doi: 10.3389/fimmu.2020.00761.
[21] Basil MC, Katzen J, Engler AE, et al. The cellular and physiological basis for lung repair and regeneration: past, present, and future[J]. Cell Stem Cell, 2020, 26(4): 482-502.
[22] Basil MC, Cardenas-Diaz FL, Kathiriya JJ, et al. Human distal airways contain a multipotent secretory cell that can regenerate alveoli[J]. Nature, 2022, 604(7904): 120-126.
[23] Smolinska S, Antolín-Amérigo D, Popescu FD, et al. Thymic stromal lymphopoietin(TSLP), its isoforms and the interplay with the epithelium in allergy and asthma[J]. Int J Mol Sci, 2023, 24(16): 12725. doi: 10.3390/ijms241612725.
[24] Chen W, Chen S, Yan C, et al. Allergen protease-activated stress granule assembly and gasdermin D fragmentation control interleukin-33 secretion[J]. Nat Immunol, 2022, 23(7): 1021-1030.
[25] Zhang D, Zhang J, Xu C, et al. A humanized mouse model to study asthmatic airway remodeling and Muc-5ac secretion via the human IL-33[J]. Allergy, 2024. 79(5): 1364-1367.
[26] Qi Q, Xu J, Wang Y, et al. Decreased sphingosine due to down-regulation of acid ceramidase expression in airway of bronchiectasis patients: a potential contributor to pseudomonas aeruginosa infection[J]. Infect Drug Resist, 2023, 16: 2573-2588. doi: 10.2147/IDR.S407335.
[27] Saikumar Jayalatha AK, Jonker MR, Carpaij OA, et al. Lack of a transcriptional response of primary bronchial epithelial cells from patients with asthma and controls to IL-33[J]. Am J Physiol Lung Cell Mol Physiol, 2024, 326(1): L65-L70.
[28] Ruhl A, Antão AV, Dietschmann A, et al. STAT6-induced production of mucus and resistin-like molecules in lung Club cells does not protect against helminth or influenza A virus infection[J]. Eur J Immunol, 2024, 54(1): e2350558. doi: 10.1002/eji.202350558.
[29] Li Y, Zhang Q, Li L, et al. LKB1 deficiency upregulates RELM-α to drive airway goblet cell metaplasia[J]. Cell Mol Life Sci, 2021, 79(1): 42. doi: 10.1007/s00018-021-04044-w.
[30] Kortekaas RK, Geillinger-Kästle KE, Borghuis T, et al. Interleukin-11 disrupts alveolar epithelial progenitor function[J]. ERJ Open Res, 2023, 9(3): 00679-2022. doi: 10.1183/23120541.00679-2022.
[31] Thomas D, Mcdonald VM, Pavord ID, et al. Asthma remission: what is it and how can it be achieved?[J]. Eur Respir J, 2022, 60(5): 2102583. doi: 10.1183/13993003.02583-2021.
[32] Mümmler C, Milger K. Biologics for severe asthma and beyond[J]. Pharmacol Ther, 2023, 252: 108551. doi: 10.1016/j.pharmthera.2023.108551.
[33] Chan R, Stewart K, Misirovs R, et al. Targeting downstream type 2 cytokines or upstream epithelial alarmins for severe asthma[J]. J Allergy Clin Immunol Pract, 2022, 10(6): 1497-1505.
[34] Shinkai M, Yabuta T. Tezepelumab: an anti-thymic stromal lymphopoietin monoclonal antibody for the treatment of asthma[J]. Immunotherapy, 2023, 15(17): 1435-1447.
[35] Wechsler ME, Ruddy MK, Pavord ID, et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma[J]. N Engl J Med, 2021, 385(18): 1656-1668.
[36] Maspero J, Agache IO, Kamei T, et al. Long-term safety and exploratory efficacy of fevipiprant in patients with inadequately controlled asthma: the SPIRIT randomised clinical trial[J]. Respir Res, 2021, 22(1): 311. doi: 10.1186/s12931-021-01904-8.
[37] Eger K, Kroes JA, Ten Brinke A, et al. Long-term therapy response to anti-IL-5 biologics in severe asthma-a real-life evaluation[J]. J Allergy Clin Immunol Pract, 2021, 9(3): 1194-1200.
[38] Demarche SF, Schleich FN, Paulus VA, et al. Is it possible to claim or refute sputum eosinophils ≥ 3% in asthmatics with sufficient accuracy using biomarkers?[J]. Respir Res, 2017, 18(1): 133. doi: 10.1186/s12931-017-0615-9.
[39] Gautam S, Chu JH, Cohen AJ, et al. Sputum alarmins delineate distinct T2 cytokine pathways and unique subtypes of patients with asthma[J]. Allergy, 2023, 78(12): 3274-3277.
[40] Banno A, Reddy AT, Lakshmi SP, et al. Bidirectional interaction of airway epithelial remodeling and inflammation in asthma[J]. Clin Sci(Lond), 2020, 134(9): 1063-1079.
[41] Vannella KM, Ramalingam TR, Borthwick LA, et al. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis[J]. Sci Transl Med, 2016, 8(337): 337ra65. doi: 10.1126/scitranslmed.aaf1938.
[1] 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26.
[2] 步美玲,王金荣,冯梅,孙立锋. FOXM1在呼吸道病毒感染致哮喘小鼠急性发作中的机制[J]. 山东大学学报 (医学版), 2023, 61(6): 1-9.
[3] 王园园,孙云. 合并新型冠状病毒肺炎的维持性血液透析患者死亡危险因素[J]. 山东大学学报 (医学版), 2023, 61(11): 68-73.
[4] 王福立,孙银萍,秦杰,荣建胜. DC-CIK细胞联合EGFR-TKI治疗35例老年晚期EGFR突变肺癌的效果[J]. 山东大学学报 (医学版), 2022, 60(7): 110-117.
[5] 李华玉,时萧寒,张新蕊,李峰. 203例胶质瘤患者睡眠障碍与炎症细胞因子的关联分析[J]. 山东大学学报 (医学版), 2022, 60(12): 26-30.
[6] 张阿敏,李国盛,李福海. 儿童支原体大叶性肺炎肺泡灌洗液细胞因子与局部炎症的相关性[J]. 山东大学学报 (医学版), 2022, 60(11): 82-88.
[7] 葛少华,丁田,刘红蕊. 2型免疫在组织修复中的作用及调控机制[J]. 山东大学学报 (医学版), 2021, 59(9): 51-56.
[8] 张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇. 骨化三醇对哮喘中TGF-β1所诱导上皮间充质转化的调控作用[J]. 山东大学学报 (医学版), 2021, 59(7): 10-18.
[9] 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21.
[10] 李湘青,殷欣,赵雪莲,赵培庆. NK细胞亚群CD56bright在帕金森患者外周血中的表达及临床意义[J]. 山东大学学报 (医学版), 2021, 59(2): 34-40.
[11] 刘晓菲,梁瀛,张丛溪,王娟,潘云,徐嘉蔚,常春,董亮. 92例哮喘患者血清瘦素与诱导痰嗜酸性粒细胞的关系[J]. 山东大学学报 (医学版), 2020, 1(9): 27-33.
[12] 蔡秋景,张倩,何学佳,孙文丽,郭爱丽,张楠,朱薇薇. 气道平滑肌细胞通过TGF-β1/Smad3信号通路调节IL-33的表达参与哮喘[J]. 山东大学学报 (医学版), 2020, 58(4): 78-83.
[13] 鞠秀丽. 间充质干细胞治疗新型冠状病毒肺炎的潜在机制和研究进展[J]. 山东大学学报 (医学版), 2020, 58(3): 32-37.
[14] 杨丽萍,慕婷婷,杨玉娟,张宇,宋西成. 吸入性变应原对腺样体肥大合并支气管哮喘患儿肺功能影响[J]. 山东大学学报 (医学版), 2020, 58(3): 107-112.
[15] 李岩,牛瑞,王超超. 122例哮喘患者舒张试验结果分析[J]. 山东大学学报 (医学版), 2020, 58(11): 81-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!