您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (7): 78-83.doi: 10.6040/j.issn.1671-7554.0.2024.0292

• 临床医学 • 上一篇    下一篇

基于机器学习建立术前预测近端胃癌食管切缘阳性模型

郭振江1,王宁2,赵光远1,杜立强1,崔朝勃2,刘防震1   

  1. 衡水市人民医院 1.胃肠外科;2.呼吸与危重症科, 河北 衡水 053000
  • 发布日期:2024-09-20
  • 通讯作者: 刘防震. E-mail:liufangzhen01@163.com
  • 基金资助:
    2023年度河北省医学科学研究课题计划项目(20230262)

Development of preoperative models for predicting positive esophageal margin in proximal gastric cancer based on machine learning

GUO Zhenjiang1, WANG Ning2, ZHAO Guangyuan1, DU Liqiang1, CUI Zhaobo2, LIU Fangzhen1   

  1. 1. Department of Gastrointestinal;
    2. Department of Respiratory and Critical Care Medicine, Hengshui Peoples Hospital, Hengshui 053000, Hebei, China
  • Published:2024-09-20

摘要: 目的 建立术前预测近端胃癌食管切缘阳性的机器学习模型,并比较其与传统Logistics模型的预测性能。 方法 回顾性分析2013年1月至2022年12月于衡水市人民医院胃肠外科接受近端胃癌手术的382例患者的临床病理资料,根据食管切缘状态分为切缘阳性组(n=30)和切缘阴性组(n=352)。将研究对象按21比例随机分为训练集(n=254)和测试集(n=128),采用合成少数样本过采样技术(synthetic minority oversampling technique, SMOTE)处理训练集中的不平衡数据,基于平衡后SMOTE数据集建立随机森林(random forest, RF)、支持向量机(support vector machine, SVM)和极端梯度提升(extreme gradient boosting, Xgboost)3种机器学习模型及Logistic回归模型。通过上述4种模型,在测试集中预测食管切缘阳性时,利用受试者操作特征曲线下面积(area under curve, AUC)数值来比较不同模型的预测性能,对最佳预测模型中预测因素的重要性进行可视化排序。 结果 4种模型的AUC值从高到低依次为RF模型0.772(95%CI:0.620~0.925),SVM模型0.747(95%CI:0.604~0.891),Logistic回归模型0.716(95%CI:0.537~0.895)和Xgboost模型0.710(95%CI:0.560~0.859)。RF模型预测性能最佳。肿瘤大小、肿瘤位置、Borrmann分型、Lauren分型及cT分期是RF模型中前5位重要因素。 结论 所建立的术前预测近端胃癌食管切缘阳性的RF模型性能良好;肿瘤大小、肿瘤位置、Borrmann分型、Lauren分型及cT分期是主要的预测因素。

关键词: 胃癌, 进展期, 切缘阳性, 机器学习, 预测模型

Abstract: Objective To develop machine learning models for preoperative prediction of positive esophageal margins in proximal gastric cancer and to compare its prediction performance with conventional Logistics models. Methods A total of 382 patients with proximal gastric cancer who received operation at the Department of Gastrointestinal Surgery of Hengshui Peoples Hospital from January 2013 to December 2022 were retrospectively analyzed and divided into the margin-positive group(n=30)and the margin-negative group(n=352)according to the pathologic diagnosis. The clinicopathological factors that might affect the positive esophageal margins of proximal gastric cancer were collected, and the study population were randomly divided into the training set(n=254)and the test set(n=128)in a ratio of 2∶1. The unbalanced data in the training set were processed by synthetic minority oversampling technique(SMOTE). Three machine learning models, that is, the random forest(RF), support vector machine(SVM)and extreme gradient boosting(Xgboost), and Logistic regression model were established based on the balanced SMOTE dataset. The predictive performance of the different models was compared by the AUC values of the above four models in predicting positive esophageal margins in the test set, and the importance of the predictors in the best predictive model was visually ranked. Results RF had the highest AUC value(0.772, 95%CI: 0.620-0.925), followed by SVM(AUC: 0.747, 95%CI: 0.604-0.891), the Logistic regression(AUC: 0.716, 95%CI: 0.537-0.895), and Xgboost(AUC: 0.710, 95%CI: 0.560-0.859). The RF model had the best predictive performance. Tumor size, tumor location, Borrmann staging, Lauren staging and cT staging were the top 5 important factors in the RF model. Conclusion The established random forest model for preoperative prediction of positive margins in proximal gastric cancer shows good performance, with tumor size, tumor location, Borrmann staging, Lauren staging and cT staging being the main predictive factors.

Key words: Gastric cancer, Advanced, Positive proximal margin, Machine learning, Predictive model

中图分类号: 

  • R735.2
[1] 汪欣, 陈晓. 近端胃癌的诊断与治疗进展[J]. 中华普通外科杂志, 2023, 38(4): 241-244. WANG Xin, CHEN Xiao. Progress in diagnosis and treatment of proximal gastric cancer[J]. Chinese Journal of General Surgery, 2023, 38(4): 241-244.
[2] Han WH, Eom BW, Yoon HM, et al. The optimal extent of lymph node dissection in gastroesophageal junctional cancer: retrospective case control study[J]. BMC Cancer, 2019, 19(1): 719. doi:10.1186/s12885-019-5922-8.
[3] Cho BC, Jeung HC, Choi HJ, et al. Prognostic impact of resection margin involvement after extended(D2/D3)gastrectomy for advanced gastric cancer: a 15-year experience at a single institute[J]. J Surg Oncol, 2007, 95(6): 461-468.
[4] Talavera-Urquijo E, Davies AR, Wijnhoven BPL. Prevention and treatment of a positive proximal margin after gastrectomy for cardia cancer[J]. Updates Surg, 2023, 75(2): 335-341.
[5] Jiang ZY, Liu CY, Cai ZL, et al. Impact of surgical margin status on survival in gastric cancer: a systematic review and meta-analysis[J]. Cancer Control, 2021, 28: 10732748211043665. doi:10.1177/10732748211043665.
[6] Nakanishi K, Morita S, Taniguchi H, et al. Diagnostic accuracy and usefulness of intraoperative margin assessment by frozen section in gastric cancer[J]. Ann Surg Oncol, 2019, 26(6): 1787-1794.
[7] Watanabe A, Adamson H, Lim H, et al. Intraoperative frozen section analysis of margin status as a quality indicator in gastric cancer surgery[J]. J Surg Oncol, 2023, 127(1): 66-72.
[8] Berlth F, Kim WH, Choi JH, et al. Prognostic impact of frozen section investigation and extent of proximal safety margin in gastric cancer resection[J]. Ann Surg, 2020, 272(5): 871-878.
[9] Bissolati M, Desio M, Rosa F, et al. Risk factor analysis for involvement of resection margins in gastric and esophagogastric junction cancer: an Italian multicenter study[J]. Gastric Cancer, 2017, 20(1): 70-82.
[10] De Manzoni G, Marrelli D, Baiocchi GL, et al. The Italian Research Group for Gastric Cancer(GIRCG)guidelines for gastric cancer staging and treatment: 2015[J]. Gastric Cancer, 2017, 20(1): 20-30.
[11] Kumazu Y, Hayashi T, Yoshikawa T, et al. Risk factors analysis and stratification for microscopically positive resection margin in gastric cancer patients[J]. BMC Surg, 2020, 20(1): 95. doi:10.1186/s12893-020-00744-5.
[12] Popovic D, Glisic T, Milosavljevic T, et al. The importance of artificial intelligence in upper gastrointestinal endoscopy[J]. Diagnostics, 2023, 13(18): 2862. doi:10.3390/diagnostics13182862.
[13] 巨艳丽, 王丽华, 成芳, 等. 基于机器学习构建放射性碘治疗疗效的预测模型[J]. 山东大学学报(医学版), 2023, 61(1): 94-99. JU Yanli, WANG Lihua, CHENG Fang, et al. Construction of predictive models of radioiodine therapy based on machine learning[J]. Journal of Shandong University(Health Sciences), 2023, 61(1): 94-99.
[14] 何文琪, 伍兵. 胃癌术前cTN分期的影像研究进展[J]. 国际医学放射学杂志, 2019, 42(1): 76-80. HE Wenqi, WU Bing. Progress in imaging studies on preoperative cTN staging of gastric cancer[J]. International Journal of Medical Radiology, 2019, 42(1): 76-80.
[15] Hassan A, Gulzar Ahmad S, Ullah Munir E, et al. Predictive modelling and identification of key risk factors for stroke using machine learning[J]. Sci Rep, 2024, 14(1): 11498. doi:10.1038/s41598-024-61665-4.
[16] Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent[J]. J Stat Softw, 2010, 33(1): 1-22.
[17] 刘颂, 夏秋媛, 付尧, 等. 胃癌根治术中食管切缘跳跃转移30例临床特征分析[J]. 中华胃肠外科杂志, 2023, 26(7): 675-679. LIU Song, XIA Qiuyuan, FU Yao, et al. Skip metastasis at the esophageal resection margin in radical gastrectomy: clinical characteristics of 30 cases[J]. Chinese Journal of Gastrointestinal Surgery, 2023, 26(7): 675-679.
[18] Haverkamp L, Ruurda JP, van Leeuwen MS, et al. Systematic review of the surgical strategies of adenocarcinomas of the gastroesophageal junction[J]. Surg Oncol, 2014, 23(4): 222-228.
[19] Fuchs H, Hölscher AH, Leers J, et al. Long-term quality of life after surgery for adenocarcinoma of the esophagogastric junction: extended gastrectomy or transthoracic esophagectomy?[J]. Gastric Cancer, 2016, 19(1): 312-317.
[20] Brown AM, Giugliano DN, Berger AC, et al. Surgical approaches to adenocarcinoma of the gastroesophageal junction: the Siewert II conundrum[J]. Langenbecks Arch Surg, 2017, 402(8): 1153-1158.
[21] Imamura Y, Watanabe M, Oki E, et al. Esophagogastric junction adenocarcinoma shares characteristics with gastric adenocarcinoma: literature review and retrospective multicenter cohort study[J]. Ann Gastroenterol Surg, 2021, 5(1): 46-59.
[22] Juez LD, Barranquero AG, Priego P, et al. Influence of positive margins on tumour recurrence and overall survival after gastrectomy for gastric cancer[J]. ANZ J Surg, 2021, 91(7/8): E465-E473.
[23] Tu RH, Lin JX, Wang W, et al. Pathological features and survival analysis of gastric cancer patients with positive surgical margins: a large multicenter cohort study[J]. Eur J Surg Oncol, 2019, 45(12): 2457-2464.
[24] Pang T, Nie MM, Yin K. The correlation between the margin of resection and prognosis in esophagogastric junction adenocarcinoma[J]. World J Surg Oncol, 2023, 21(1): 316. doi:10.1186/s12957-023-03202-7.
[25] Jung MK, Schmidt T, Chon SH, et al. Current surgical treatment standards for esophageal and esophagogastric junction cancer[J]. Ann N Y Acad Sci, 2020, 1482(1): 77-84.
[26] van der Werf LR, Cords C, Arntz I, et al. Population-based study on risk factors for tumor-positive resection margins in patients with gastric cancer[J]. Ann Surg Oncol, 2019, 26(7): 2222-2233.
[27] Fukagawa T, Katai H, Mizusawa J, et al. A prospective multi-institutional validity study to evaluate the accuracy of clinical diagnosis of pathological stage III gastric cancer(JCOG1302A)[J]. Gastric Cancer, 2018, 21(1): 68-73.
[28] Nechita Vi, Al-Hajjar N, Leucuta DC, et al. Inflammatory ratios as survival prognostic factors in resectable gastric adenocarcinoma[J]. Diagnostics(Basel), 2023, 13(11): 1910. doi:10.3390/diagnostics13111910.
[1] 孙丽娜,白红艳,牛宗格,张福帅,曲仪庆. 基于SII构建及评价预测ARDS住院死亡率的在线临床风险模型[J]. 山东大学学报 (医学版), 2024, 62(7): 10-20.
[2] 王静,刘晓菲,曾荣,许长娟,张锦涛,董亮. 基于机器学习算法鉴定哮喘的坏死性凋亡相关生物标志物[J]. 山东大学学报 (医学版), 2024, 62(7): 21-32.
[3] 郭鑫,孟君,郑世良,董秀红. 老年胃癌患者衰弱与人体成分的相关性[J]. 山东大学学报 (医学版), 2024, 62(4): 40-47.
[4] 梁永媛,蔡培飞,郑桂喜. 基于多检验变量和机器学习算法的结肠癌诊断模型建立及价值评估[J]. 山东大学学报 (医学版), 2024, 62(2): 51-59.
[5] 刁玉洁,林琳,李文瑄,王洲洋,江蓓,胡迎迎,刘广义. NPR预测ANCA相关血管炎不良肾脏预后及其协同多因素优化模型[J]. 山东大学学报 (医学版), 2024, 62(2): 60-68.
[6] 张景慧,王娟,赵玉洁,段淼,刘毅然,林敏娟,谯旭,李真,左秀丽. 基于机器学习的胃肠道疾病舌诊模型构建[J]. 山东大学学报 (医学版), 2024, 62(1): 38-47.
[7] 孙菁果,朱文帅,鲁艺,马晓丽,郏雁飞. 幽门螺杆菌感染对胃癌细胞m6A水平的影响及其机制[J]. 山东大学学报 (医学版), 2023, 61(9): 10-18.
[8] 樊荣,李彬彬,马晓丽,汪运山,郏雁飞. 胃癌中DEC2、HIF-2α的表达及临床意义[J]. 山东大学学报 (医学版), 2023, 61(7): 12-18.
[9] 穆彦熹,李金洲,陈康,梁红英,姚亚龙,汪文杰,陈晓. 443例胃癌根治术后发生肺部并发症的危险因素[J]. 山东大学学报 (医学版), 2023, 61(4): 37-41.
[10] 钟璐,薛付忠. 基于贝叶斯网络不确定性推理的肺癌风险预测模型[J]. 山东大学学报 (医学版), 2023, 61(4): 86-94.
[11] 郭崇勇,赵朋,刘海盟,王强, 贾宗师,张建. 胸前丘疹为首发表现的胃癌1例[J]. 山东大学学报 (医学版), 2023, 61(4): 119-120.
[12] 刘亚军,郎昭,郭安忆,刘文勇. 骨科冲击波治疗的智能化发展现状及趋势分析[J]. 山东大学学报 (医学版), 2023, 61(3): 7-13.
[13] 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20.
[14] 王赞,徐晓涵,张瑜,曲业敏,王明义,陈艾. 幽门螺杆菌感染对胃癌细胞糖酵解的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 16-24.
[15] 朱正阳,沈靖菲,陈思璇,叶梅萍,杨惠泉,周佳南,梁雪,张鑫,张冰. 磁敏感加权成像不同影像组学模型预测胶质瘤IDH基因突变[J]. 山东大学学报 (医学版), 2023, 61(12): 44-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋立,张艳,刘洋,王丹. 随访2年观察1例新发突变的营养不良型大疱性表皮松解症[J]. 山东大学学报 (医学版), 2020, 1(8): 120 -122 .
[2] 张娟,张璐嘉,肖伟,李顺平. 住院医师规范化培训学员压力知觉与留职意愿及影响因素[J]. 山东大学学报 (医学版), 2020, 1(7): 108 -114 .
[3] 冀永娟,项紫霓,匡桂芳. 青岛市两所三甲医院医务人员职业倦怠对生活质量影响的路径分析[J]. 山东大学学报 (医学版), 2020, 1(7): 102 -107 .
[4] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[5] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[6] 王志宇,截短型A组轮状病毒VP6在E.coli中的高效表达[J]. 山东大学学报(医学版), 2006, 44(5): 433 -437 .
[7] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .
[8] 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42 -49, 73 .
[9] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[10] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .