山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (7): 78-83.doi: 10.6040/j.issn.1671-7554.0.2024.0292
郭振江1,王宁2,赵光远1,杜立强1,崔朝勃2,刘防震1
GUO Zhenjiang1, WANG Ning2, ZHAO Guangyuan1, DU Liqiang1, CUI Zhaobo2, LIU Fangzhen1
摘要: 目的 建立术前预测近端胃癌食管切缘阳性的机器学习模型,并比较其与传统Logistics模型的预测性能。 方法 回顾性分析2013年1月至2022年12月于衡水市人民医院胃肠外科接受近端胃癌手术的382例患者的临床病理资料,根据食管切缘状态分为切缘阳性组(n=30)和切缘阴性组(n=352)。将研究对象按2∶1比例随机分为训练集(n=254)和测试集(n=128),采用合成少数样本过采样技术(synthetic minority oversampling technique, SMOTE)处理训练集中的不平衡数据,基于平衡后SMOTE数据集建立随机森林(random forest, RF)、支持向量机(support vector machine, SVM)和极端梯度提升(extreme gradient boosting, Xgboost)3种机器学习模型及Logistic回归模型。通过上述4种模型,在测试集中预测食管切缘阳性时,利用受试者操作特征曲线下面积(area under curve, AUC)数值来比较不同模型的预测性能,对最佳预测模型中预测因素的重要性进行可视化排序。 结果 4种模型的AUC值从高到低依次为RF模型0.772(95%CI:0.620~0.925),SVM模型0.747(95%CI:0.604~0.891),Logistic回归模型0.716(95%CI:0.537~0.895)和Xgboost模型0.710(95%CI:0.560~0.859)。RF模型预测性能最佳。肿瘤大小、肿瘤位置、Borrmann分型、Lauren分型及cT分期是RF模型中前5位重要因素。 结论 所建立的术前预测近端胃癌食管切缘阳性的RF模型性能良好;肿瘤大小、肿瘤位置、Borrmann分型、Lauren分型及cT分期是主要的预测因素。
中图分类号:
[1] 汪欣, 陈晓. 近端胃癌的诊断与治疗进展[J]. 中华普通外科杂志, 2023, 38(4): 241-244. WANG Xin, CHEN Xiao. Progress in diagnosis and treatment of proximal gastric cancer[J]. Chinese Journal of General Surgery, 2023, 38(4): 241-244. [2] Han WH, Eom BW, Yoon HM, et al. The optimal extent of lymph node dissection in gastroesophageal junctional cancer: retrospective case control study[J]. BMC Cancer, 2019, 19(1): 719. doi:10.1186/s12885-019-5922-8. [3] Cho BC, Jeung HC, Choi HJ, et al. Prognostic impact of resection margin involvement after extended(D2/D3)gastrectomy for advanced gastric cancer: a 15-year experience at a single institute[J]. J Surg Oncol, 2007, 95(6): 461-468. [4] Talavera-Urquijo E, Davies AR, Wijnhoven BPL. Prevention and treatment of a positive proximal margin after gastrectomy for cardia cancer[J]. Updates Surg, 2023, 75(2): 335-341. [5] Jiang ZY, Liu CY, Cai ZL, et al. Impact of surgical margin status on survival in gastric cancer: a systematic review and meta-analysis[J]. Cancer Control, 2021, 28: 10732748211043665. doi:10.1177/10732748211043665. [6] Nakanishi K, Morita S, Taniguchi H, et al. Diagnostic accuracy and usefulness of intraoperative margin assessment by frozen section in gastric cancer[J]. Ann Surg Oncol, 2019, 26(6): 1787-1794. [7] Watanabe A, Adamson H, Lim H, et al. Intraoperative frozen section analysis of margin status as a quality indicator in gastric cancer surgery[J]. J Surg Oncol, 2023, 127(1): 66-72. [8] Berlth F, Kim WH, Choi JH, et al. Prognostic impact of frozen section investigation and extent of proximal safety margin in gastric cancer resection[J]. Ann Surg, 2020, 272(5): 871-878. [9] Bissolati M, Desio M, Rosa F, et al. Risk factor analysis for involvement of resection margins in gastric and esophagogastric junction cancer: an Italian multicenter study[J]. Gastric Cancer, 2017, 20(1): 70-82. [10] De Manzoni G, Marrelli D, Baiocchi GL, et al. The Italian Research Group for Gastric Cancer(GIRCG)guidelines for gastric cancer staging and treatment: 2015[J]. Gastric Cancer, 2017, 20(1): 20-30. [11] Kumazu Y, Hayashi T, Yoshikawa T, et al. Risk factors analysis and stratification for microscopically positive resection margin in gastric cancer patients[J]. BMC Surg, 2020, 20(1): 95. doi:10.1186/s12893-020-00744-5. [12] Popovic D, Glisic T, Milosavljevic T, et al. The importance of artificial intelligence in upper gastrointestinal endoscopy[J]. Diagnostics, 2023, 13(18): 2862. doi:10.3390/diagnostics13182862. [13] 巨艳丽, 王丽华, 成芳, 等. 基于机器学习构建放射性碘治疗疗效的预测模型[J]. 山东大学学报(医学版), 2023, 61(1): 94-99. JU Yanli, WANG Lihua, CHENG Fang, et al. Construction of predictive models of radioiodine therapy based on machine learning[J]. Journal of Shandong University(Health Sciences), 2023, 61(1): 94-99. [14] 何文琪, 伍兵. 胃癌术前cTN分期的影像研究进展[J]. 国际医学放射学杂志, 2019, 42(1): 76-80. HE Wenqi, WU Bing. Progress in imaging studies on preoperative cTN staging of gastric cancer[J]. International Journal of Medical Radiology, 2019, 42(1): 76-80. [15] Hassan A, Gulzar Ahmad S, Ullah Munir E, et al. Predictive modelling and identification of key risk factors for stroke using machine learning[J]. Sci Rep, 2024, 14(1): 11498. doi:10.1038/s41598-024-61665-4. [16] Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent[J]. J Stat Softw, 2010, 33(1): 1-22. [17] 刘颂, 夏秋媛, 付尧, 等. 胃癌根治术中食管切缘跳跃转移30例临床特征分析[J]. 中华胃肠外科杂志, 2023, 26(7): 675-679. LIU Song, XIA Qiuyuan, FU Yao, et al. Skip metastasis at the esophageal resection margin in radical gastrectomy: clinical characteristics of 30 cases[J]. Chinese Journal of Gastrointestinal Surgery, 2023, 26(7): 675-679. [18] Haverkamp L, Ruurda JP, van Leeuwen MS, et al. Systematic review of the surgical strategies of adenocarcinomas of the gastroesophageal junction[J]. Surg Oncol, 2014, 23(4): 222-228. [19] Fuchs H, Hölscher AH, Leers J, et al. Long-term quality of life after surgery for adenocarcinoma of the esophagogastric junction: extended gastrectomy or transthoracic esophagectomy?[J]. Gastric Cancer, 2016, 19(1): 312-317. [20] Brown AM, Giugliano DN, Berger AC, et al. Surgical approaches to adenocarcinoma of the gastroesophageal junction: the Siewert II conundrum[J]. Langenbecks Arch Surg, 2017, 402(8): 1153-1158. [21] Imamura Y, Watanabe M, Oki E, et al. Esophagogastric junction adenocarcinoma shares characteristics with gastric adenocarcinoma: literature review and retrospective multicenter cohort study[J]. Ann Gastroenterol Surg, 2021, 5(1): 46-59. [22] Juez LD, Barranquero AG, Priego P, et al. Influence of positive margins on tumour recurrence and overall survival after gastrectomy for gastric cancer[J]. ANZ J Surg, 2021, 91(7/8): E465-E473. [23] Tu RH, Lin JX, Wang W, et al. Pathological features and survival analysis of gastric cancer patients with positive surgical margins: a large multicenter cohort study[J]. Eur J Surg Oncol, 2019, 45(12): 2457-2464. [24] Pang T, Nie MM, Yin K. The correlation between the margin of resection and prognosis in esophagogastric junction adenocarcinoma[J]. World J Surg Oncol, 2023, 21(1): 316. doi:10.1186/s12957-023-03202-7. [25] Jung MK, Schmidt T, Chon SH, et al. Current surgical treatment standards for esophageal and esophagogastric junction cancer[J]. Ann N Y Acad Sci, 2020, 1482(1): 77-84. [26] van der Werf LR, Cords C, Arntz I, et al. Population-based study on risk factors for tumor-positive resection margins in patients with gastric cancer[J]. Ann Surg Oncol, 2019, 26(7): 2222-2233. [27] Fukagawa T, Katai H, Mizusawa J, et al. A prospective multi-institutional validity study to evaluate the accuracy of clinical diagnosis of pathological stage III gastric cancer(JCOG1302A)[J]. Gastric Cancer, 2018, 21(1): 68-73. [28] Nechita Vi, Al-Hajjar N, Leucuta DC, et al. Inflammatory ratios as survival prognostic factors in resectable gastric adenocarcinoma[J]. Diagnostics(Basel), 2023, 13(11): 1910. doi:10.3390/diagnostics13111910. |
[1] | 孙丽娜,白红艳,牛宗格,张福帅,曲仪庆. 基于SII构建及评价预测ARDS住院死亡率的在线临床风险模型[J]. 山东大学学报 (医学版), 2024, 62(7): 10-20. |
[2] | 王静,刘晓菲,曾荣,许长娟,张锦涛,董亮. 基于机器学习算法鉴定哮喘的坏死性凋亡相关生物标志物[J]. 山东大学学报 (医学版), 2024, 62(7): 21-32. |
[3] | 郭鑫,孟君,郑世良,董秀红. 老年胃癌患者衰弱与人体成分的相关性[J]. 山东大学学报 (医学版), 2024, 62(4): 40-47. |
[4] | 梁永媛,蔡培飞,郑桂喜. 基于多检验变量和机器学习算法的结肠癌诊断模型建立及价值评估[J]. 山东大学学报 (医学版), 2024, 62(2): 51-59. |
[5] | 刁玉洁,林琳,李文瑄,王洲洋,江蓓,胡迎迎,刘广义. NPR预测ANCA相关血管炎不良肾脏预后及其协同多因素优化模型[J]. 山东大学学报 (医学版), 2024, 62(2): 60-68. |
[6] | 张景慧,王娟,赵玉洁,段淼,刘毅然,林敏娟,谯旭,李真,左秀丽. 基于机器学习的胃肠道疾病舌诊模型构建[J]. 山东大学学报 (医学版), 2024, 62(1): 38-47. |
[7] | 孙菁果,朱文帅,鲁艺,马晓丽,郏雁飞. 幽门螺杆菌感染对胃癌细胞m6A水平的影响及其机制[J]. 山东大学学报 (医学版), 2023, 61(9): 10-18. |
[8] | 樊荣,李彬彬,马晓丽,汪运山,郏雁飞. 胃癌中DEC2、HIF-2α的表达及临床意义[J]. 山东大学学报 (医学版), 2023, 61(7): 12-18. |
[9] | 穆彦熹,李金洲,陈康,梁红英,姚亚龙,汪文杰,陈晓. 443例胃癌根治术后发生肺部并发症的危险因素[J]. 山东大学学报 (医学版), 2023, 61(4): 37-41. |
[10] | 钟璐,薛付忠. 基于贝叶斯网络不确定性推理的肺癌风险预测模型[J]. 山东大学学报 (医学版), 2023, 61(4): 86-94. |
[11] | 郭崇勇,赵朋,刘海盟,王强, 贾宗师,张建. 胸前丘疹为首发表现的胃癌1例[J]. 山东大学学报 (医学版), 2023, 61(4): 119-120. |
[12] | 刘亚军,郎昭,郭安忆,刘文勇. 骨科冲击波治疗的智能化发展现状及趋势分析[J]. 山东大学学报 (医学版), 2023, 61(3): 7-13. |
[13] | 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20. |
[14] | 王赞,徐晓涵,张瑜,曲业敏,王明义,陈艾. 幽门螺杆菌感染对胃癌细胞糖酵解的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 16-24. |
[15] | 朱正阳,沈靖菲,陈思璇,叶梅萍,杨惠泉,周佳南,梁雪,张鑫,张冰. 磁敏感加权成像不同影像组学模型预测胶质瘤IDH基因突变[J]. 山东大学学报 (医学版), 2023, 61(12): 44-50. |
|