山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (2): 1-8.doi: 10.6040/j.issn.1671-7554.0.2022.1442
• 基础医学 • 下一篇
黄珊,娄能俊,韩晓琳,梁中昊,华梦羽,庄向华,陈诗鸿
HUANG Shan, LOU Nengjun, HAN Xiaolin, LIANG Zhonghao, HUA Mengyu, ZHUANG Xianghua, CHEN Shihong
摘要: 目的 探讨高糖环境下磷脂酸磷酸酶(Lipin1)对PC12细胞代谢组学的影响。 方法 构建感染慢病毒的PC12细胞。用25 mmol/L正常糖浓度孵育感染空壳病毒的PC12细胞(WT组)和感染低表达Lipin1病毒的PC12细胞(D-WT组),用100 mmol/L高糖浓度孵育感染空壳病毒的PC12细胞(HG组)和感染过表达Lipin1病毒的PC12细胞(G-HG组),48 h后,使用蛋白免疫印迹法对Lipin1的表达进行验证(n≥6)。WT组、HG组和G-HG组处理48h,收集细胞。细胞进行液相色谱串联质谱,比较代谢组学差异(n=6)。 结果 与WT组相比,D-WT组和HG组的Lipin1表达明显降低(P<0.05);G-HG组与HG组相比,Lipin1表达明显升高(P<0.01)。以VIP>1,P<0.05,差异倍数(FC)>1.5或<0.65为差异代谢物筛选标准,与WT组相比,HG组谷氨酸明显下降;与HG组相比,G-HG组甘油二酯(DAG)、2-花生酰基甘油(2-AG)等明显上升。高糖孵育和调控Lipin1后的认知相关通路涉及到逆行内源性大麻素信号传导(ECS),谷氨酸能突触、长时程增强(LTP)和长时程抑制(LTD)等。 结论 高糖环境下谷氨酸降低可能是糖尿病脑病的发病机制,过表达Lipin1后可改善神经相关代谢物DAG、2-AG和相关通路ECS从而缓解认知障碍,Lipin1可能是糖尿病脑病关键治疗靶点之一。
中图分类号:
[1] Alsharif AA, Wei L, Ma T, et al. Prevalence and incidence of dementia in people with diabetes mellitus [J]. J Alzheimers Dis, 2020, 75(2): 607-615. [2] Fazeli SA. Neuroprotection in diabetic encephalopathy [J]. Neurodegener Dis, 2009, 6(5/6): 213-218. [3] Shang P, Zheng F, Han F, et al. Lipin1 mediates cognitive impairment in fld mice via PKD-ERK pathway [J]. Biochem Biophys Res Commun, 2020, 525(2): 286-291. [4] Xie M, Wang M, Liu W, et al. Lipin1 is involved in the pathogenesis of diabetic encephalopathy through the PKD/Limk/Cofilin signaling pathway [J]. Oxid Med Cell Longev, 2020, 2020: 1723423. doi: 10.1155/2020/1723423. [5] Yuan Q, Deng D, Pan C, et al. Integration of transcriptomics, proteomics, and metabolomics data to reveal HER2-associated metabolic heterogeneity in gastric cancer with response to immunotherapy and neoadjuvant chemotherapy [J]. Front Immunol, 2022, 13: 951137. doi: 10.3389/fimmu.2022.951137. [6] 李雁儒, 李娟, 李培龙, 等. 胰腺癌不同进展期血清外泌体蛋白质组学分析[J]. 山东大学学报(医学版), 2022, 60(10): 33-41. LI Yanru, LI Juan, LI Peilong, et al. Proteomic analysis of serum exosomes in pancreatic cancer with different stages of progress [J]. Journal of Shandong University(Health Sciences), 2022, 60(10): 33-41. [7] Pignalosa FC, Desiderio A, Mirra P, et al. Diabetes and cognitive impairment: a role for glucotoxicity and dopaminergic dysfunction [J]. Int J Mol Sci, 2021, 22(22). doi: 10.3390/ijms222212366. [8] Dong M, Ren M, Li C, et al. Analysis of metabolic alterations related to pathogenic process of diabetic encephalopathy rats [J]. Front Cell Neurosci, 2018, 12: 527. doi: 10.3389/fncel.2018.00527. [9] Gao H, Jiang Q, Ji H, et al. Type 1 diabetes induces cognitive dysfunction in rats associated with alterations of the gut microbiome and metabolomes in serum and hippocampus [J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(12): 165541. doi: 10.1016/j.bbadis.2019.165541. Epub 2019 Aug 28. [10] Andersen JV, Markussen KH, Jakobsen E, et al. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration [J]. Neuropharmacology, 2021, 196: 108719. doi: 10.1016/j.bbadis.2019.165541. [11] Luo SS, Zou KX, Zhu H, et al. Integrated multi-omics analysis reveals the effect of maternal gestational diabetes on fetal mouse hippocampi [J]. Front Cell Dev Biol, 2022, 10: 748862. doi: 10.3389/fcell.2022.748862. [12] Wang M, Xie M, Yu S, et al. Lipin1 alleviates autophagy disorder in sciatic nerve and improves diabetic peripheral neuropathy [J]. Mol Neurobiol, 2021, 58(11): 6049-6061. [13] Morris G, Walder K, Kloiber S, et al. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks [J]. Pharmacol Res, 2021, 170: 105729. doi: 10.1016/j.phrs.2021.105729. [14] Gonçalves-Ribeiro J, Pina CC, Sebastião AM, et al. Glutamate transporters in hippocampal LTD/LTP: not just prevention of excitotoxicity [J]. Front Cell Neurosci, 2019, 13: 357. doi: 10.3389/fncel.2019.00357. [15] Ueda N, Tsuboi K, Uyama T, et al. Biosynthesis and degradation of the endocannabinoid 2-arachidonoylglycerol [J]. Biofactors, 2011, 37(1): 1-7. [16] Sawamura S, Hatano M, Takada Y, et al. Screening of transient receptor potential canonical channel activators identifies novel neurotrophic piperazine compounds [J]. Mol Pharmacol, 2016, 89(3): 348-363. [17] Zhao L, Yeh MLW, Levine ES. Role for endogenous BDNF in endocannabinoid-mediated long-term depression at neocortical inhibitory synapses [J]. eNeuro, 2015, 2(2). doi: 10.1523/ENEURO.0029-14.2015. [18] Furlan I, Godinho RO. Developing skeletal muscle cells express functional muscarinic acetylcholine receptors coupled to different intracellular signaling systems [J]. Br J Pharmacol, 2005, 146(3): 389-396. [19] Lee D, Kim E, Tanaka-Yamamoto K. Diacylglycerol kinases in the coordination of synaptic plasticity [J]. Front Cell Dev Biol, 2016, 4: 92. doi: 10.3389/fcell.2016.00092. [20] 李春艳, 赵洪庆, 杨蕙, 等. 谷氨酸兴奋毒性及其调节剂的研究进展[J]. 中国药理学通报, 2022, 38(5): 645-649. LI Chunyan, ZHAO Hongqing, YANG Hui, et al. Research progress on excitotoxicity of glutamate and its modulators[J]. Chinese Pharmacological Bulletin, 2022, 38(5): 645-649. [21] Nelson TJ, Sun MK, Hongpaisan J, et al. Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair [J]. Eur J Pharmacol, 2008, 585(1): 76-87. [22] Dominguez-Garcia S, Gomez-Oliva R, Geribaldi-Doldan N, et al. Effects of classical PKC activation on hippocampal neurogenesis and cognitive performance: mechanism of action [J]. Neuropsychopharmacology, 2021, 46(6): 1207-1219. [23] Farr SA, Roesler E, Niehoff ML, et al. Metformin improves learning and memory in the SAMP8 mouse model of Alzheimers disease [J]. J Alzheimers Dis, 2019, 68(4): 1699-1710. [24] Hongpaisan J, Sun MK, Alkon DL. PKC epsilon activation prevents synaptic loss, abeta elevation, and cognitive deficits in alzheimers disease transgenic mice [J]. J Neurosci, 2011, 31(2): 630-643. [25] Lowe H, Toyang N, Steele B, et al. The endocannabinoid system: a potential target for the treatment of various diseases [J]. Int J Mol Sci, 2021, 22(17). doi: 10.3390/ijms22179472. [26] Patricio F, Morales-Andrade AA, Patricio-Martínez A, et al. Cannabidiol as a therapeutic target: evidence of its neuroprotective and neuromodulatory function in parkinson's disease [J]. Front Pharmacol, 2020, 11: 595635. doi: 10.3389/fphar.2020.595635. [27] Basavarajappa BS, Nagre NN, Xie S, et al. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice [J]. Hippocampus, 2014, 24(7): 808-818. [28] Hu M, Zhu D, Zhang J, et al. Enhancing endocannabinoid signalling in astrocytes promotes recovery from traumatic brain injury [J]. Brain, 2022, 145(1): 179-193. |
[1] | 宋洛卿,周国钰,叶翔,卢梅,赵新静. 脑淀粉样血管病相关炎症长期误诊1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(4): 119-122. |
[2] | 苑宝文,王沛,黄蔚. 组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用[J]. 山东大学学报 (医学版), 2022, 60(3): 1-12. |
[3] | 赵慧文,许琳,单姗,赵秀兰. 牛磺酸对1-溴丙烷致大鼠认知功能障碍的保护作用[J]. 山东大学学报 (医学版), 2022, 60(2): 14-21. |
[4] | 于书卷,王美娟,陈丽,曹英娟,吕晓燕,刘雪燕,林鹏,颜景政. 老年2型糖尿病患者轻度认知功能障碍的影响因素[J]. 山东大学学报 (医学版), 2022, 60(11): 108-112. |
[5] | 李宁,王翠兰,张玉荣. 帕金森病患者脑动脉多普勒测定指数及血清表皮生长因子与动脉硬化和认知障碍的关联分析[J]. 山东大学学报 (医学版), 2021, 59(3): 61-66. |
[6] | 孔文程,徐广润,贾俊丽,崔新宇. 脑腱黄瘤病1例并文献复习[J]. 山东大学学报 (医学版), 2021, 59(11): 72-75. |
[7] | 章海容, 张小红, 王超群. 哺乳动物雷帕霉素靶蛋白通路调控ECA109细胞放疗敏感性的代谢组学[J]. 山东大学学报 (医学版), 2020, 58(1): 6-12. |
[8] | 张晓倩,孟祥水,任庆国,南晓敏,安盼盼,帅欣艳,夏晓娜,王璇. 磁共振波谱成像对检测非痴呆型血管性认知障碍的探讨[J]. 山东大学学报 (医学版), 2019, 57(4): 42-46. |
[9] | 宋立敏,鲁珊珊, 王大伟,吕鑫,高原,唐吉友. 慢性失眠患者睡眠结构与注意力、记忆的相关性[J]. 山东大学学报 (医学版), 2019, 57(4): 52-58. |
[10] | 于斐,刘少壮,仲明惟,黄鑫,焦杰,胡三元,于文滨. 基于GC-TOF-MS的结直肠癌代谢组学差异分析[J]. 山东大学学报(医学版), 2016, 54(7): 60-68. |
[11] | 宓特,屈传强,王翔,尹苓,薛媛,杜怡峰. 血清淀粉样蛋白A与脑梗死急性期认知功能的相关性[J]. 山东大学学报(医学版), 2016, 54(10): 40-45. |
[12] | 董芳,杜怡峰. 腔隙性脑梗死患者认知障碍与高同型半胱氨酸血症、梗死灶数目及体积的相关性[J]. 山东大学学报(医学版), 2016, 54(10): 46-49. |
[13] | 周冬, 常红, 孙若鹏. 丙酮酸钠对新生鼠低血糖脑损伤的神经保护作用[J]. 山东大学学报(医学版), 2015, 53(4): 37-42. |
[14] | 刘盈君, 张涛, 王璐, 刘佳, 常学润, 张敬悬, 薛付忠. 基于随机森林的精神分裂症血清代谢组学研究[J]. 山东大学学报(医学版), 2015, 53(2): 92-96. |
[15] | 董栋, 王新怡. 磁共振体素内不相干运动在轻度认知功能障碍诊断中的初步研究[J]. 山东大学学报(医学版), 2014, 52(8): 68-71. |
|