山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (8): 88-94.doi: 10.6040/j.issn.1671-7554.0.2020.0604
Anjing CHEN1,2,*(),Xun ZHANG1,2
摘要:
蛋白质的小类泛素(SUMO)化修饰(SUMOylation)是一种动态的翻译后修饰,涉及了细胞一系列的生理过程。值得注意的是,SUMO化也在多种癌症病理过程中发挥重要作用,其中包括严重危害人类健康的脑胶质瘤。本文回顾分析SUMO化修饰与胶质瘤相关的核心文献,着重探究SUMO化修饰过程中的关键靶点,可望作为胶质瘤治疗有潜力的新方法,为其精准靶向治疗提供新的策略。
中图分类号:
1 |
Stupp R , Hegi ME , Mason WP , et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomized phase III study: 5-year analysis of the EORTC-NCIC trial[J]. Lancet Oncol, 2009, 10 (5): 459- 466.
doi: 10.1016/S1470-2045(09)70025-7 |
2 | Polivka JJr , Polivka J , Holubec L , et al. Advances in experimental targeted therapy and immunotherapy for patients with glioblastoma multiforme[J]. Anticancer Res, 2017, 37 (1): 21- 33. |
3 |
Mahajan R , Delphin C , Guan T , et al. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2[J]. Cell, 1997, 88 (1): 97- 107.
doi: 10.1016/S0092-8674(00)81862-0 |
4 |
Hendriks I A , Vertegaal A C . A comprehensive compilation of SUMO proteomics[J]. Nat Rev Mol Cell Biol, 2016, 17 (9): 581- 595.
doi: 10.1038/nrm.2016.81 |
5 |
Eifler K , Vertegaal ACO . SUMOylation-mediated regulation of cell cycle progression and cancer[J]. Trends Biochem. Sci, 2015, 40 (12): 779- 793.
doi: 10.1016/j.tibs.2015.09.006 |
6 |
Bayer P , Arndt A , Metzger S , et al. Structure determination of the small ubiquitin-related modifier SUMO-1[J]. J Mol Biol, 1998, 280 (2): 275- 286.
doi: 10.1006/jmbi.1998.1839 |
7 |
Shen Z , Pardington-Purtymun PE , Comeaux JC , et al. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins[J]. Genomics, 1996, 36 (2): 271- 279.
doi: 10.1006/geno.1996.0462 |
8 | Boddy MN , Howe K , Etkin LD , et al. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukemia[J]. Oncogene, 1996, 13 (5): 971- 982. |
9 | Matunis MJ , Coutavas E , Blobel G . A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex[J]. J Cell Biol, 1996, 135 (6 Pt 1): 1457- 1470. |
10 |
Lapenta V , Chiurazzi P , van der Spek P , et al. SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family[J]. Genomics, 1997, 40 (2): 362- 366.
doi: 10.1006/geno.1996.4556 |
11 |
Johnson ES . Protein modification by SUMO[J]. Annu Rev Biochem, 2004, 73: 355- 382.
doi: 10.1146/annurev.biochem |
12 | Evdokimov E , Sharma P , Lockett SJ , et al. Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3[J]. J Cell Sci, 2008, 121 (Pt 24): 4106- 4113. |
13 |
Owerbach D , McKay EM , Yeh ET , et al. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation[J]. Biochem Biophys Res Commun, 2005, 337 (2): 517- 520.
doi: 10.1016/j.bbrc.2005.09.090 |
14 |
Hickey CM , Wilson NR , Hochstrasser M . Function and regulation of SUMO proteases[J]. Nat Rev Mol Cell Biol, 2012, 13 (12): 755- 766.
doi: 10.1038/nrm3478 |
15 |
Olsen SK , Capili AD , Lu X , et al. Active site remodelling accompanies thioester bond formation in the SUMO E1[J]. Nature, 2010, 463 (7283): 906- 912.
doi: 10.1038/nature08765 |
16 |
Gong L , Kamitani T , Fujise K , et al. Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9[J]. J Biol Chem, 1997, 272 (45): 28198- 28201.
doi: 10.1074/jbc.272.45.28198 |
17 |
Desterro JM , Thomson J , Hay RT . Ubch9 conjugates SUMO but not ubiquitin[J]. FEBS Lett, 1997, 417 (3): 297- 300.
doi: 10.1016/S0014-5793(97)01305-7 |
18 |
Rodriguez MS , Dargemont C , Hay RT . SUMO-1conjugation in vivo requires both a consensus modification motif and nuclear targeting[J]. J Biol Chem, 2001, 276 (16): 12654- 12659.
doi: 10.1074/jbc.M009476200 |
19 |
Johnson ES , Gupta AA . An E3-like factor that promotes SUMO conjugation to the yeast septins[J]. Cell, 2001, 106 (6): 735- 744.
doi: 10.1016/S0092-8674(01)00491-3 |
20 |
Gong L , Millas S , Maul GG , et al. Differential regulation of sentrinized proteins by a novel sentrin-specific protease[J]. J Biol Chem, 2000, 275 (5): 3355- 3359.
doi: 10.1074/jbc.275.5.3355 |
21 |
Schulz S , Chachami G , Kozaczkiewicz L , et al. Ubiquitin-specific protease-like 1(USPL1) is a SUMO isopeptidase with essential, non-catalytic functions[J]. EMBO Rep, 2012, 13 (10): 930- 938.
doi: 10.1038/embor.2012.125 |
22 |
Bellail AC , Olson JJ , Hao C . SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression[J]. Nature Commun, 2014, 5: 4234.
doi: 10.1038/ncomms5234 |
23 |
Yang W , Wang L , Roehn G , et al. Small ubiquitin-like modifier 1-3 conjugation[corrected] is activated in human astrocytic brain tumors and is required for glioblastoma cell survival[J]. Cancer Sci, 2013, 104 (1): 70- 77.
doi: 10.1111/cas.12047 |
24 |
Li H , Niu H , Peng Y , et al. Ubc9 promotes invasion and metastasis of lung cancer cells[J]. Oncol Rep, 2013, 29 (4): 1588- 1594.
doi: 10.3892/or.2013.2268 |
25 | Shao DF , Wang XH , Li ZY , et al. High-level SAE2 promotes malignant phenotype and predicts outcome in gastric cancer[J]. Am J Cancer Res, 2015, 5 (2): 140- 154. |
26 |
Zhang H , Kuai X , Ji Z , et al. Over-expression of small ubiquitin-related modifier-1 and sumoylated p53 in colon cancer[J]. Cell Biochem Biophys, 2013, 67 (3): 1081- 1087.
doi: 10.1007/s12013-013-9612-x |
27 |
Guo WH , Yuan LH , Xiao ZH , et al. Overexpression of SUMO-1 in hepatocellular carcinoma: a latent target for diagnosis and therapy of hepatoma[J]. J Cancer Res Clin Oncol, 2011, 137 (3): 533- 541.
doi: 10.1007/s00432-010-0920-x |
28 |
Chien W , Lee KL , Ding LW , et al. PIAS4 is an activator of hypoxia signaling via VHL suppression during growth of pancreatic cancer cells[J]. Br J Cancer, 2013, 109 (7): 1795- 1804.
doi: 10.1038/bjc.2013.531 |
29 |
Sternsdorf T , Jensen K , Will H . Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1[J]. J Cell Biol, 1997, 139 (7): 1621- 1634.
doi: 10.1083/jcb.139.7.1621 |
30 |
Zhong S , Muller S , Ronchetti S , et al. Role of SUMO-1-modified PML in nuclear body formation[J]. Blood, 2000, 95 (9): 2748- 2752.
doi: 10.1182/blood.V95.9.2748.009k31a_2748_2752 |
31 |
Altmannova V , Kolesar P , Krejci L . SUMO wrestles with recombination[J]. Biomolecules, 2012, 2 (3): 350- 375.
doi: 10.3390/biom2030350 |
32 |
Bonne-Andrea C , Kahli M , Mechali F , et al. SUMO2/3 modification of cyclin E contributes to the control of replication origin firing[J]. Nat Commun, 2013, 4: 1850.
doi: 10.1038/ncomms2875 |
33 |
Carter S , Bischof O , Dejean A , et al. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53[J]. Nat Cell Biol, 2007, 9 (4): 428- 435.
doi: 10.1038/ncb1562 |
34 |
Renner F , Moreno R , Schmitz ML . SUMOylation-dependent localization of IKKepsilon in PML nuclear bodies is essential for protection against DNA-damage-triggered cell death[J]. Mol Cell, 2010, 37 (4): 503- 515.
doi: 10.1016/j.molcel.2010.01.018 |
35 |
Potts PR , Yu H . The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins[J]. Nat Struct Mol Biol, 2007, 14 (7): 581- 590.
doi: 10.1038/nsmb1259 |
36 |
Li J , Xu Y , Long XD , et al. Cbx4 governs HIF-1alpha to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity[J]. Cancer Cell, 2014, 25 (1): 118- 131.
doi: 10.1016/j.ccr.2013.12.008 |
37 |
Cashman R , Cohen H , Ben-Hamo R , et al. SENP5 mediates breast cancer invasion via a TGFbetaRI SUMOylation cascade[J]. Oncotarget, 2014, 5 (4): 1071- 1082.
doi: 10.18632/oncotarget.1783 |
38 |
Mao H , Lebrun DG , Yang J , et al. Deregulated signaling pathways in glioblastoma multiforme: Molecular mechanisms and therapeutic targets[J]. Cancer Invest, 2012, 30 (1): 48- 56.
doi: 10.3109/07357907.2011.630050 |
39 |
Soares IN , Caetano FA , Pinder J , et al. Regulation of stress-inducible phosphoprotein 1 nuclear retention by protein inhibitor of activated STAT PIAS1[J]. Mol Cell Proteomics, 2013, 12 (11): 3253- 3270.
doi: 10.1074/mcp.M113.031005 |
40 |
Nakayama KI , Nakayama K . Ubiquitin ligases: Cell-cycle control and cancer[J]. Nat Rev Cancer, 2006, 6 (5): 369- 381.
doi: 10.1038/nrc1881 |
41 | Bernstock JD , Ye D , Gessler FA , et al. Topotecan is a potent inhibitor of SUMOylation in glioblastoma multiforme and alters both cellular replication and metabolic programming[J]. Sci Rep, 2017, 7 (1): 7425. |
42 |
Xu H , Rahimpour S , Nesvick CL , et al. Activation of hypoxia signaling induces phenotypic transformation of glioma cells: Implications for bevacizumab antiangiogenic therapy[J]. Oncotarget, 2015, 6 (14): 11882- 11893.
doi: 10.18632/oncotarget.3592 |
43 |
Yang Y , Xia Z , Wang X , et al. Small-molecule inhibitors targeting protein sumoylation as novel anticancer compounds[J]. Mol Pharmcol, 2018, 94 (2): 885- 894.
doi: 10.1124/mol.118.112300 |
44 |
Chen Y , Wen D , Huang Z , et al. 2-(4-Chlorophenyl)-2-oxoethyl 4-benzamidobenzoate derivatives, a novel class of SENP1 inhibitors: virtual screening, synthesis and biological evaluation[J]. Bioorg Med Chem Lett, 2012, 22 (22): 6867- 6870.
doi: 10.1016/j.bmcl.2012.09.037 |
45 | Brave M , Dagher R , Farrell A , et al. Topotecan in combination with cisplatin for the treatment of stage IVB, recurrent, or persistent cervical cancer[J]. J Oncol, 2006, 20 (11): 1401- 1404. |
46 |
Pommier Y . Topoisomerase I inhibitors: camptothecins and beyond[J]. J Nat Rev Cancer, 2006, 6 (10): 789.
doi: 10.1038/nrc1977 |
47 |
Ling YH , Donato NJ , Perez-Soler R . Sensitivity to topoisomerase I inhibitors and cisplatin is associated with epidermal growth factor receptor expression in human cervical squamous carcinoma ME180 sublines[J]. Cancer Chemother Pharmacol, 2001, 47 (6): 473- 480.
doi: 10.1007/s002800000239 |
48 |
Hirohama M , Kumar A , Fukuda I , et al. Spectomycin B1 as a novel SUMOylation inhibitor that directly binds to SUMO E2[J]. ACS Chem Biol, 2013, 8 (12): 2635- 2642.
doi: 10.1021/cb400630z |
49 |
Schneekloth JS Jr . Drug discovery: controlling protein SUMOylation[J]. Nat Chem Biol, 2017, 13 (11): 1141.
doi: 10.1038/nchembio.2496 |
50 |
Fukuda I , Ito A , Hirai G , et al. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate[J]. Chem Biol, 2009, 16 (2): 133- 140.
doi: 10.1016/j.chembiol.2009.01.009 |
51 |
Fukuda I , Ito A , Uramoto M , et al. Kerriamycin B inhibits protein SUMOylation[J]. J Antibiot, 2009, 62 (4): 221.
doi: 10.1038/ja.2009.10 |
52 |
Takemoto M , Kawamura Y , Hirohama M , et al. Inhibition of protein SUMOylation by davidiin, an ellagitannin from Davidia involucrata[J]. J Antibiot, 2014, 67 (4): 335.
doi: 10.1038/ja.2013.142 |
53 |
Suzawa M , Miranda DA , Ramos KA , et al. A gene-expression screen identifies a non-toxic sumoylation inhibitor that mimics SUMO-less human LRH-1 in liver[J]. Elife, 2015, 4: e09003.
doi: 10.7554/eLife.09003 |
54 |
Zhao B , Villhauer EB , Bhuripanyo K , et al. SUMO-mimicking peptides inhibiting protein SUMOylation[J]. Chembiochem, 2014, 15 (18): 2662- 2666.
doi: 10.1002/cbic.201402472 |
55 |
Wu J , Lei H , Zhang J , et al. Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation[J]. Oncotarget, 2016, 7 (37): 58995- 59005.
doi: 10.18632/oncotarget.10636 |
56 |
Bernstock JD , Lee Y , Peruzzotti-Jametti L , et al. A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation[J]. J Cereb Blood Flow Metab, 2016, 36 (2): 426- 441.
doi: 10.1177/0271678X15609939 |
57 |
Huang W , He T , Chai C , et al. Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression[J]. PLoS One, 2012, 7 (5): e37693.
doi: 10.1371/journal.pone.0037693 |
[1] | 江涛. 类脑智能在脑科学的前沿应用[J]. 山东大学学报 (医学版), 2020, 58(8): 10-13. |
[2] | 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 58(8): 67-73. |
[3] | 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 58(8): 81-87. |
[4] | 焉传祝,王伟,纪坤乾,赵玉英. 线粒体与脑疾病[J]. 山东大学学报 (医学版), 2020, 58(8): 34-41. |
[5] | 徐继禧,陈伟健. 髓内弥漫性中线胶质瘤伴H3 K27M突变1例[J]. 山东大学学报 (医学版), 2020, 58(7): 96-101. |
|