您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2026, Vol. 64 ›› Issue (1): 74-87.doi: 10.6040/j.issn.1671-7554.0.2024.1056

• 基础医学 • 上一篇    下一篇

基于生物信息学分析鉴定哮喘潜在的关键自噬和铁死亡相关基因

张秋萍1,2,朱慧志3,吕川1,夏咏琪1,张秀1   

  1. 1.安徽中医药大学第一临床医学院, 安徽 合肥 230031;2.上海中医药大学附属曙光医院安徽医院呼吸(老年病)科, 安徽 合肥 230031;3.安徽中医药大学第一附属医院呼吸内科, 安徽 合肥 230031
  • 发布日期:2026-01-27
  • 通讯作者: 朱慧志. E-mail:huizhizhu87@163.com
  • 基金资助:
    安徽省第六批特支计划创新领军人才资助项目(皖组办字[2020]24号)

Identification of potential key autophagy- and ferroptosis-related genes in asthma based on bioinformatics analysis

ZHANG Qiuping1,2, ZHU Huizhi3, LYU Chuan1, XIA Yongqi1, ZHANG Xiu1   

  1. 1. The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei 230031, Anhui, China;
    2. Department of Respiratory(Geriatrics), Shuguang Anhui Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Hefei 230031, Anhui, China;
    3. Department of Respiratory Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui, China
  • Published:2026-01-27

摘要: 目的 利用生物信息学分析方法,鉴定自噬和铁死亡过程的共同哮喘基因。 方法 从基因表达综合(Gene Expression Omnibus, GEO)数据库中获取哮喘相关的GSE74986数据集,利用GEO2R在线工具进行分析,通过设定|log2 FC|≥1和P校正< 0.05的标准,筛选出差异表达基因(differential expression genes, DEGs)。使用韦恩图获得重叠的铁死亡和自噬相关DEGs。进行功能和通路富集分析、蛋白质-蛋白质相互作用网络分析和Cytoscape软件算法鉴定枢纽基因。构建转录因子(transcription factor, TF)、miRNA与枢纽基因之间的相互作用网络。分析枢纽基因在哮喘组织中免疫细胞浸润情况。通过受试者工作特征(receiver operating characteristic, ROC)曲线分析来验证枢纽基因的诊断价值。动物实验验证枢纽基因。 结果 共鉴定出105个自噬相关的DEGs 和 37个铁死亡相关的DEGs。这些 DEGs 分别参与自噬、PI3K-Akt、铁死亡、PPAR等信号通路。筛选出10个枢纽基因(HSPA8、NPM1、HNRNPA2B1、HNRNPA1、HSPA5、EEF1A1、G3BP1、TFRC、GABARAPL1和XBP1),其可靶向61种miRNAs和17种TFs。免疫浸润分析表明,枢纽基因与M0型巨噬细胞、活化的NK细胞及 M1型巨噬细胞之间存在相关性。ROC曲线分析结果表明,枢纽基因在哮喘诊断中具有较高价值。动物实验证实,模型组肺组织中HSPA8、NPM1、HNRNPA2B1、HNRNPA1、HSPA5的蛋白表达水平低于正常组。 结论 筛选的枢纽基因HSPA8、NPM1、HNRNPA2B1、HNRNPA1、HSPA5、EEF1A1、G3BP1、TFRC、GABARAPL1和XBP1可能是哮喘患者的潜在治疗靶点。

关键词: 哮喘, 基因表达综合数据库, 铁死亡, 自噬, 生物信息学

Abstract: Objective To identify the common asthma genes involved in autophagy and ferroptosis processes using bioinformatics analysis methods. Methods The asthma-related GSE74986 dataset were obtained from the Gene Expre-ssion Omnibus(GEO)database and analyzed using the GEO2R web tool. The differentially expressed genes(DEGs)were screened by setting the criteria of |log2 FC| ≥ 1 and a corrected P-value <0.05. Ferroptosis- and autophagy-related DEGs were intersected with Venn diagrams. Hub genes were further identified with functional and pathway enrichment analysis, protein-protein interaction network analysis, and algorithms in Cytoscape software, followed by the construction of a transcription factor-miRNA-hub gene interaction network. Hub genes were subjected to immune cell infiltration analysis in asthmatic patients. In addition, the diagnostic value of hub genes was assessed with receiver opera-ting characteristic(ROC)curves analyses. Animal experiments were conducted to validate hub genes. Results A total of 105 autophagy-related DEGs and 37 ferroptosis-related DEGs were identified, which were involved in autophagy-animal, PI3K-Akt pathway, ferroptosis, and PPAR pathway. Ten hub genes were yielded, including HSPA8, NPM1, HNRNPA2B1, HNRNPA1, HSPA5, EEF1A1, G3BP1, TFRC, GABARAPL1, and XBP1 targeting a total of 61 miRNAs and 17 TFs. Immune cell infiltration analysis showed that these hub genes were closely related to macrophages M0, activated NK cells, and macrophages M1. ROC curve analyses indicated the high diagnostic value of the hub genes for asthma. Animal experiments confirmed that the protein expression levels of HSPA8, NPM1, HNRNPA2B1, HNRNPA1, and HSPA5 in the lung tissue of the model group were significantly lower than those in the normal group. Conclusion The screened hub genes,including HSPA8, NPM1, HNRNPA2B1, HNRNPA1, HSPA5, EEF1A1, G3BP1, TFRC, GABARAPL1, and XBP1, may be potential therapeutic targets for asthma.

Key words: Asthma, Gene Expression Omnibus database, Ferroptosis, Autophagy, Bioinformatics

中图分类号: 

  • R574
[1] Huang K, Yang T, Xu J, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study[J]. Lancet, 2019, 394(10196): 407-418.
[2] Liu L, Zhou L, Wang LL, et al. Programmed cell death in asthma: apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis[J]. J Inflamm Res, 2023,16: 2727-2754. doi: 10.2147/JIR.S417801
[3] Li BB, Chen YL, Pang F. MicroRNA-30a targets ATG5 and attenuates airway fibrosis in asthma by suppressing autophagy[J]. Inflammation, 2020, 43(1): 44-53.
[4] Xu W, Deng H, Hu S, et al. Role of ferroptosis in lung diseases[J]. J Inflamm Res, 2021,14: 2079-2090. doi: 10.2147/JIR.S307081
[5] Li M, Li M, Hou Y, et al. Ferroptosis triggers airway inflammation in asthma[J]. Ther Adv Respir Dis, 2023, 17: 17534666231208628. doi: 10.1177/17534666231208628
[6] Lv X, Tang W, Qin J, et al. The crosslinks between fe-rroptosis and autophagy in asthma[J]. Front Immunol, 2023, 14: 1140791. doi: 10.3389/fimmu.2023.1140791
[7] Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation[J]. Cell Death Dis, 2019, 10(11): 822. doi: 10.1038/s41419-019-2064-5
[8] Hou W, Xie Y, Song X, et al. Autophagy promotes fe-rroptosis by degradation of ferritin[J]. Autophagy,2016,12(8): 1425-1428.
[9] Ma S, Dielschneider RF, Henson ES, et al. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells[J]. PLoS One, 2017,12(8): e0182921. doi: 10.1371/journal.pone.0182921
[10] Liu J, Kuang F, Kroemer G, et al. Autophagy-dependent ferroptosis: machinery and regulation[J]. Cell Chem Biol, 2020, 27(4): 420-435.
[11] Sun Y, Peng I, Webster JD, et al. Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response[J]. Sci Signal, 2015, 8(405): ra122. doi: 10.1126/scisignal.aab0949
[12] Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update[J]. Nucleic Acids Res, 2013, 41(Database issue): D991-D995.
[13] Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33. doi: 10.1002/cpbi.5
[14] Liberzon A, Birger C, Thorvaldsdóttir H, et al. The Molecular Signatures Database(MSigDB)hallmark gene set collection[J]. Cell Syst, 2015, 1(6): 417-425.
[15] Zhou N, Yuan X, Du Q, et al. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations[J]. Nucleic Acids Res, 2023, 51(D1): D571-D582.
[16] Szklarczyk D, Gable AL, Nastou KC, et al.The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612.
[17] Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomole-cular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504.
[18] Dweep H, Gretz N, Sticht C. miRWalk database for mi-RNA-target interactions[J]. Methods Mol Biol, 2014, 1182: 289-305. doi: 10.1007/978-1-4939-1062-5_25
[19] Han H, Cho JW, Lee S, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions[J]. Nucleic Acids Res, 2018, 46(D1): D380-D386.
[20] Chen B, Khodadoust MS, Liu CL, et al. Profiling tumor infiltrating immune cells with CIBERSORT[J]. Methods Mol Biol, 2018, 1711: 243-259. doi: 10.1007/978-1-4939-7493-1_12
[21] Zhou J, Tan Y, Hu L, et al. Inhibition of HSPA8 by ri-fampicin contributes to ferroptosis via enhancing auto-phagy[J]. Liver Int, 2022, 42(12): 2889-2899.
[22] Fu W, Zhang M, Meng Y, et al. Increased NPM1 inhibit ferroptosis and aggravate renal fibrosis via Nrf2 pathway in chronic kidney disease[J]. Biochim Biophys Acta Mol Basis Dis, 2025, 1871(1): 167551. doi: 10.1016/j.bbadis.2024.167551
[23] Zheng R, Yu Y, Lv L, et al. m6A reader HNRNPA2B1 destabilization of ATG4B regulates autophagic activity, proliferation and olaparib sensitivity in breast cancer[J]. Exp Cell Res, 2023, 424(1): 113487. doi: 10.1016/j.yexcr.2023.113487
[24] Jiang J, Zhu J, Qiu P, et al. HNRNPA2B1-mediated m6A modification of FOXM1 promotes drug resistance and inhibits ferroptosis in endometrial cancer via regulation of LCN2[J]. Funct Integr Genomics, 2023, 24(1): 3. doi: 10.1007/s10142-023-01279-7
[25] 李政, 刘雅雯, 陈家希, 等. hnRNPA2B1通过抑制转铁蛋白受体增强胰腺癌细胞对铁死亡的抵抗[J]. 江苏大学学报(医学版), 2024, 34(1): 1-10. LI Zheng, LIU Yawen, CHEN Jiaxi, et al. hnRNPA2B1 enhances the resistance of pancreatic cancer cells to ferroptosis by inhibiting transferrin receptor[J]. Journal of Jiangsu University(Medicine Edition), 2024, 34(1): 1-10.
[26] Duan Y, Yan Y, Fu H, et al. SNHG15-mediated feedback loop interplays with HNRNPA1/SLC7A11/GPX4 pathway to promote gastric cancer progression[J]. Cancer Sci, 2024, 115(7): 2269-2285.
[27] Zhu S, Zhang Q, Sun X, et al. HSPA5 regulates ferroptotic cell death in cancer cells[J]. Cancer Res, 2017, 77(8): 2064-2077.
[28] Mao C, Wang X, Liu Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53[J].Cancer Res, 2018, 78(13): 3484-3496.
[29] Li S, Liao Z, Yin H, et al. G3BP1 coordinates lyso-phagy activity to protect against compression-induced cell ferroptosis during intervertebral disc degeneration[J]. Cell Prolif, 2023, 56(3): e13368. doi: 10.1111/cpr.13368
[30] Qin J, Li Z, Su L, et al. Expression of transferrin receptor/TFRC protein in bladder cancer cell T24 and its role in inducing iron death in bladder cancer[J]. Int J Biol Macromol, 2024, 274(Pt 1): 133323. doi: 10.1016/j.ijbiomac.2024.133323
[31] Meng J, Xu L, Ma B, et al. GABARAPL1 is essential for ACR-induced autophagic cell death of mouse Leydig cells[J]. Ecotoxicol Environ Saf, 2025, 289: 117426. doi: 10.1016/j.ecoenv.2024.117426
[32] Pan M, Zhang L, Chang S, et al. Poly-l-arginine promotes ferroptosis in asthmatic airway epithelial cells by modulating PBX1/GABARAPL1 axis[J]. Int J Biol Macromol, 2025, 286: 138478. doi: 10.1016/j.ijbiomac.2024.138478
[33] Gao K, Zhao Y, Si M, et al. ERS regulates endometrial epithelial cell autophagy through XBP1s-mediated activation of the PI3K/AKT pathway[J]. Sci Rep, 2025, 15(1): 5943. doi: 10.1038/s41598-024-84461-6
[34] Zuo Z, Luo M, Liu Z, et al. Selenium nanoparticles alleviate renal ischemia/reperfusion injury by inhibiting ferritinophagy via the XBP1/NCOA4 pathway[J]. Cell Commun Signal, 2024, 22(1): 376. doi: 10.1186/s12964-024-01751-2
[35] 黄秀芳, 廖钢, 高运吉, 等. 哮喘相关基因与治疗药物的生物信息学分析[J]. 中国实验方剂学杂志, 2020, 26(2): 155-163. HUANG Xiufang, LIAO Gang, GAO Yunji, et al. Bioinformatic analysis of related genes and therapeutic drugs of asthma[J].Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(2): 155-163.
[36] 臧凝子, 李品, 庞立健, 等. 基于网络药理学和生物信息学筛选小青龙汤治疗支气管哮喘的关键基因和通路[J]. 中国实验方剂学杂志, 2021, 27(3): 171-183. ZANG Ningzi, LI Pin, PANG Lijian, et al. Exploring key genes and signaling pathways in treatment of bronchial asthma with Xiao Qinglongtang based on network pharmacology and bioinformatics[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(3): 171-183.
[37] Potaczek DP, Miethe S, Schindler V, et al. Role of airway epithelial cells in the development of different asthma phenotypes[J]. Cell Signal, 2020, 69: 109523. doi: 10.1016/j.cellsig.2019.109523
[38] Hammad H, Lambrecht BN. The basic immunology of asthma[J]. Cell, 2021, 184(6): 1469-1485.
[39] Murphy RC, Lai Y, Liu M, et al. Distinct epithelial-innate immune cell transcriptional circuits underlie airway hyperresponsiveness in asthma[J]. Am J Respir Crit Care Med, 2023, 207(12): 1565-1575.
[40] Guida G, Riccio AM. Immune induction of airway remodeling[J]. Semin Immunol, 2019, 46: 101346. doi: 10.1016/j.smim.2019.101346
[1] 张政,王建伟,杨玉娟,张宇,宋西成. 哮喘儿童2008及2019年免疫球蛋白E变化及相关危险因素[J]. 山东大学学报 (医学版), 2025, 63(7): 32-36.
[2] 曹洛菲,王珊珊,王金荣,姜荷云,苗瑜,马光增. 哮喘发作期FeNO升高儿童肺功能舒张试验的特点分析[J]. 山东大学学报 (医学版), 2025, 63(6): 38-44.
[3] 宋彦威,付振美,徐静怡,马铭泽,孙琳琳. 弗林蛋白酶靶向同源性磷酸-张力蛋白调控线粒体自噬及肝纤维化进展[J]. 山东大学学报 (医学版), 2025, 63(4): 59-68.
[4] 聂秋成,李云峰,田静,刘辛靖,孙丽丽,魏义举. NEDD4样E3泛素蛋白连接酶通过介导果糖二磷酸A的泛素化修饰调控胶质母细胞瘤细胞铁死亡敏感性[J]. 山东大学学报 (医学版), 2025, 63(11): 8-17.
[5] 牛帅,吴学君. 铁死亡在腹主动脉瘤中的研究进展[J]. 山东大学学报 (医学版), 2024, 62(9): 74-79.
[6] 王静,刘晓菲,曾荣,许长娟,张锦涛,董亮. 基于机器学习算法鉴定哮喘的坏死性凋亡相关生物标志物[J]. 山东大学学报 (医学版), 2024, 62(7): 21-32.
[7] 孙丛丛,崔文静,张锦涛,张东,刘晓菲,潘云,亓倩,徐嘉蔚,曾荣,郭红喜,董亮. 铁死亡在支气管哮喘气道重塑中的作用[J]. 山东大学学报 (医学版), 2024, 62(7): 1-9.
[8] 闫金燕,杨春,李雷,吴福玲,焦永莉,张晓蔚,李晶,张瑞珍,王磊,马香. 山东省儿童百日咳感染与哮喘的相关性[J]. 山东大学学报 (医学版), 2024, 62(7): 33-41.
[9] 刘海霞,皇甫莎莎,桑晓玉,崔东清,毕建忠,王萍. 间充质干细胞对实验性自身免疫性脑脊髓炎小鼠铁死亡的影响[J]. 山东大学学报 (医学版), 2024, 62(6): 1-8.
[10] 石硕川,曾荣,张锦涛,张东,潘云,刘晓菲,许长娟,王莹,董亮. 基于生物信息学探索支气管哮喘中的潜在差异免疫基因和免疫浸润特征[J]. 山东大学学报 (医学版), 2024, 62(5): 43-53.
[11] 徐芳,田国雄,孙倍倍,陈馨怡,陈高莹,张睿琦,应颂敏,吴妙莲,张超,吴优倩. 重度哮喘的生物与细胞疗法研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 35-42.
[12] 张锦涛,董亮. 气道上皮及其源性细胞因子与哮喘:思考与展望[J]. 山东大学学报 (医学版), 2024, 62(5): 1-6.
[13] 王婷,张丽,王刚. 神经心理性哮喘[J]. 山东大学学报 (医学版), 2024, 62(5): 28-34.
[14] 丁伊人,刘婉莹,姚蕾,姚欣. 大环内酯类抗生素治疗哮喘的研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 21-27.
[15] 刘爱静,李雁儒,高惠茹,段伟丽,李培龙,李娟,杜鲁涛,王传新. 自噬相关蛋白5在结肠癌中的表达及对结肠癌细胞迁移及侵袭能力的影响[J]. 山东大学学报 (医学版), 2024, 62(4): 14-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!