您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (4): 14-23.doi: 10.6040/j.issn.1671-7554.0.2024.0125

• 临床医学 • 上一篇    

自噬相关蛋白5在结肠癌中的表达及对结肠癌细胞迁移及侵袭能力的影响

刘爱静1,李雁儒1,高惠茹1,段伟丽1,李培龙1,李娟1,杜鲁涛2,王传新1   

  1. 1.山东大学第二医院检验医学中心, 山东 济南 250033;2.山东大学齐鲁医院检验医学中心, 山东 济南 250012
  • 发布日期:2024-05-16
  • 通讯作者: 王传新. E-mail:cxwang@sdu.edu.cn
  • 基金资助:
    山东省重点研发计划(2021ZLGX02)

Expression of autophagy-related protein 5 in colon cancer and its impact on the migration and invasion ability of colon cancer cells

LIU Aijing1, LI Yanru1, GAO Huiru1, DUAN Weili1, LI Peilong1, LI Juan1, DU Lutao2, WANG Chuanxin1   

  1. 1. Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China;
    2. Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2024-05-16

摘要: 目的 评估自噬相关蛋白5(autophagy-related protein 5, ATG5)在结肠癌中的表达及其与临床病理特征的关系,分析ATG5对结肠癌细胞迁移及侵袭能力的影响。 方法 运用在线分析工具cProsite分析ATG5 mRNA以及ATG5蛋白在结肠癌组织及癌旁正常组织中的表达水平。使用Kaplan-Meier Plotter分析ATG5表达水平对结肠癌患者预后的影响。免疫组织化学法检测100例结肠癌组织中ATG5表达,χ2和Fishers检验分析ATG5表达水平与临床病理特征的相关性。转染质粒或小干扰过表达或敲低ATG5后,Western blotting检测转染效率及自噬相关标记物微管相关蛋白轻链3(microtubule-associated protein light chain 3, LC3)的变化,Transwell实验评估过表达或敲低ATG5后结肠癌细胞的迁移及侵袭能力。使用LinkedOmics数据库分析结肠癌中与ATG5相关的差异表达基因,并进行基因本体(gene ontology, GO)分析和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes, KEGG)分析。 结果 结肠癌组织中ATG5 mRNA及蛋白的表达水平均低于癌旁正常组织(P<0.001)。低表达ATG5的结肠癌患者无复发生存期明显短于高表达ATG5的结肠癌患者(P<0.001)。免疫组化结果表明,结肠癌组织中ATG5的表达水平与淋巴结转移相关,低表达ATG5的结肠癌患者更容易发生淋巴结转移(P=0.027)。Western blotting及Transwell实验显示在SW1116细胞中过表达ATG5后,LC3Ⅱ/LC3Ⅰ增加,细胞的迁移侵袭能力减弱(PATG5=0.001;PLC3Ⅱ/LC3Ⅰ=0.04;P迁移<0.001,P侵袭<0.001);反之,在DLD1细胞中敲低ATG5后,LC3Ⅱ/LC3Ⅰ降低,细胞的迁移侵袭能力增加(PATG5#1=0.021,PATG5#2<0.001;PLC3Ⅱ/LC3Ⅰ#1=0.013,PLC3Ⅱ/LC3Ⅰ#2=0.02;P迁移<0.001,P侵袭<0.001)。ATG5相关的差异表达基因富集分析结果显示,结肠癌中ATG5可能通过影响DNA损伤反应、染色质重排及Notch信号通路等途径影响结肠癌的转移。 结论 ATG5在结肠癌中低表达,并与患者淋巴结转移及预后显著相关,结肠癌细胞中ATG5能够增加细胞自噬水平并抑制细胞侵袭转移,提示ATG5及其调控的自噬过程可能成为结肠癌临床治疗的新靶点。

关键词: 自噬相关蛋白5, 转移, 自噬, 结肠癌, 微管相关蛋白轻链3

Abstract: Objective To evaluate the expression of autophagy-related protein 5(ATG5)in colon cancer and its relationship with clinicopathological features, and to analyze the effect of ATG5 on the migration and invasion ability of colon cancer cells. Methods The expression levels of ATG5 mRNA and ATG5 protein in colon cancer tissues and adjacent normal tissues were analyzed using the online analysis tool cProsite. Kaplan-Meier Plotter was used to analyze the effect of ATG5 expression level on the prognosis of colon cancer patients. The expression of ATG5 in 100 colon cancer tissues was detected by immunohistochemistry, and the correlation between the expression level of ATG5 and clinicopathological features was analyzed by χ2 and Fishers test. ATG5 was overexpressed or knocked down in colon cancer cells by transfecting plasmid or small interfering RNA(siRNA), and then the transfection efficiency and changes of microtubule-associated protein light chain 3(LC3)were detected by Western blotting. Transwell assay was used to evaluate migration and invasion ability of colon cancer cells after overexpression or knockdown. Differentially expressed genes associated with ATG5 in colon cancer were analyzed using the LinkedOmics database, and gene ontology(GO)and kyoto encyclopedia of genes and genomes(KEGG)enrichment analyses were performed. Results The expression levels of ATG5 mRNA and protein in colon cancer tissues were lower than those in adjacent normal tissues(P<0.001). The recurrence-free survival of colon cancer patients with low ATG5 expression was significantly shorter than those with high ATG5 expression(P<0.001). Immunohistochemistry showed that the expression level of ATG5 in colon cancer tissues was correlated with lymph node metastasis, and low expression of ATG5 in colon cancer patients was more likely to develop lymph node metastasis(P=0.027). Western blotting and Transwell experiments showed that after overexpression of ATG5 in SW1116 cells, the expression of LC3Ⅱ/LC3Ⅰ increased, and the migration and invasion ability of cells was weakened(PATG5=0.001; PLC3Ⅱ/LC3Ⅰ=0.04; Pmigration<0.001, Pinvasion<0.001). Conversely, ATG5 knockdown in DLD1 cells led to a decrease in the expression of LC3Ⅱ/LC3Ⅰ, and an increase in the migration and invasion ability of the cells(PATG5#1=0.021, PATG5#2<0.001; PLC3Ⅱ/LC3Ⅰ#1=0.013, PLC3Ⅱ/LC3Ⅰ#2=0.02; Pmigration<0.001, Pinvasion<0.001). ATG5-related differentially expressed gene enrichment analysis suggested that ATG5 might affect colon cancer metastasis by affecting DNA damage response, chromatin organization and Notch signaling pathway. Conclusion ATG5 is lowly expressed in colon cancer and is significantly correlated with lymph node metastasis and prognosis of patients. ATG5 in colon cancer cells can increase the level of autophagy and inhibit cell migration and invasion, suggesting that ATG5 and its regulated autophagy process may become a new target for the clinical treatment of colon cancer.

Key words: Autophagy-related protein 5, Tumor metastasis, Autophagy, Colon cancer, Microtubule-associated protein light chain 3

中图分类号: 

  • R735.3
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] 杨莹, 韩宇. 西妥昔单抗再挑战方案后线治疗晚期结直肠癌的研究进展[J]. 中国肿瘤, 2024, 33(2): 147-152. YANG Ying, HAN Yu. Research progress on the rechallenge with cetuximab regimen as post-line therapy for advanced colorectal cancer[J]. China Cancer, 2024, 33(2): 147-152.
[3] Hossain MS, Karuniawati H, Jairoun AA, et al. Colorectal cancer: a review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies[J]. Cancers(Basel), 2022, 14(7):1732. doi: 10.3390/cancers14071732.
[4] Gómez-Virgilio L, Silva-Lucero MD, Flores-Morelos DS, et al. Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators[J]. Cells, 2022, 11(15):2262. doi: 10.3390/cells11152262.
[5] Luo M, Ji J, Yang K, et al. The role of autophagy in the treatment of colon cancer by chlorin e6 photodynamic therapy combined with oxaliplatin[J]. Photodiagnosis Photodyn Ther, 2022, 40: 103082. doi: 10.1016/j.pdpdt.2022.103082.
[6] Jin X, You L, Qiao J, et al. Autophagy in colitis-associated colon cancer: exploring its potential role in reducing initiation and preventing IBD-related CAC development[J]. Autophagy, 2024, 20(2): 242-258.
[7] Zheng Y, Wu J, Chen H, et al. KLF4 targets RAB26 and decreases 5-FU resistance through inhibiting autophagy in colon cancer[J]. Cancer Biol Ther, 2023, 24(1): 2226353. doi: 10.1080/15384047.2023.2226353.
[8] Changotra H, Kaur S, Yadav SS, et al. ATG5: a central autophagy regulator implicated in various human diseases[J]. Cell Biochem Funct, 2022, 40(7): 650-667.
[9] Corkery DP, Castro-Gonzalez S, Knyazeva A, et al. An ATG12-ATG5-TECPR1 E3-like complex regulates unconventional LC3 lipidation at damaged lysosomes[J]. EMBO Rep, 2023, 24(9): e56841. doi: 10.15252/embr.202356841.
[10] Huang Q, Liu Y, Zhang S, et al. Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice[J]. Autophagy, 2021, 17(7): 1753-1767.
[11] Feng X, Zhang H, Meng L, et al. Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5[J]. Autophagy, 2021, 17(3): 723-742.
[12] Yan J, Wang M, Lv S, et al. SiATG5-loaded cancer cell membrane-fused liposomes induced increased uptake of albumin-bound chemotherapeutics by pancreatic cancer cells[J]. J Control Release, 2024, 367: 620-636. doi: 10.1016/j.jconrel.2024.01.055.
[13] Hamada K, Kurashige T, Shimamura M, et al. MIEAP and ATG5 are tumor suppressors in a mouse model of BRAF(V600E)-positive thyroid cancer[J]. Front Endocrinol(Lausanne), 2022, 13: 932754. doi: 10.3389/fendo.2022.932754.
[14] Cao W, Li J, Yang K, et al. An overview of autophagy: mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108(3): 304-322.
[15] Xing Y, Wei X, Liu Y, et al. Autophagy inhibition mediated by MCOLN1/TRPML1 suppresses cancer metastasis via regulating a ROS-driven TP53/p53 pathway[J]. Autophagy, 2022, 18(8): 1932-1954.
[16] Rangel M, Kong J, Bhatt V, et al. Autophagy and tumorigenesis[J]. FEBS J, 2022, 289(22): 7177-7198.
[17] Kao CH, Su TY, Huang WS, et al. TFEB- and TFE3-dependent autophagy activation supports cancer proliferation in the absence of centrosomes[J]. Autophagy, 2022, 18(12): 2830-2850.
[18] 李淑敏, 王之枫, 刘宗绪, 等. 细胞自噬调控在肿瘤中作用的研究进展[J]. 中国肿瘤临床, 2023, 50(19): 1006-1010. LI Shumin, WANG Zhifeng, LIU Zongxu, et al. Research progress on autophagy regulation in tumors[J]. Chinese Journal Clinical Oncology, 2023, 50(19): 1006-1010.
[19] Yang F, Peng ZX, Ji WD, et al. LncRNA CCAT1 upregulates ATG5 to enhance autophagy and promote gastric cancer development by absorbing miR-140-3p[J]. Dig Dis Sci, 2022, 67(8): 3725-3741.
[20] Yu Z, Tang H, Chen S, et al. Exosomal LOC85009 inhibits docetaxel resistance in lung adenocarcinoma through regulating ATG5-induced autophagy[J]. Drug Resist Updat, 2023, 67: 100915. doi: 10.1016/j.drup.2022.100915.
[21] Sprinzak D, Blacklow SC. Biophysics of notch signaling[J]. Annu Rev Biophys, 2021, 50: 157-189. doi: 10.1146/annurev-biophys-101920-082204.
[22] Suarez Rodriguez F, Sanlidag S, Sahlgren C. Mechanical regulation of the Notch signaling pathway[J]. Curr Opin Cell Biol, 2023, 85: 102244. doi: 10.1016/j.ceb.2023.102244.
[23] Qiu L, Yang X, Wu J, et al. HIST2H2BF potentiates the propagation of cancer stem cells via Notch signaling to promote malignancy and liver metastasis in colorectal carcinoma[J]. Front Oncol, 2021, 11: 677646. doi: 10.1016/j.ceb.2023.102244.
[24] Li X, Liu W, Geng C, et al. Ginsenoside Rg3 suppresses epithelial-mesenchymal transition via downregulating Notch-Hes1 signaling in colon cancer cells[J]. Am J Chin Med, 2021, 49(1): 217-235.
[25] Yoshida G, Kawabata T, Takamatsu H, et al. Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis[J]. Autophagy, 2022, 18(10): 2323-2332.
[26] Li Y, Ma L, Deng Y, et al. The Notch1/Hes1 signaling pathway affects autophagy by adjusting DNA methyltransferases expression in a valproic acid-induced autism spectrum disorder model[J]. Neuropharmacology, 2023, 239: 109682. doi: 10.1016/j.neuropharm.2023.109682.
[27] Rogers JM, Guo B, Egan ED, et al. MAML1-dependent Notch-responsive genes exhibit differing cofactor requirements for transcriptional activation[J]. Mol Cell Biol, 2020, 40(11): e00014-20. doi: 10.1128/MCB.00014-20.
[28] Yan X, Cheng Y, Zhang X, et al. NICD3 regulates the expression of MUC5AC and MUC2 by recruiting SMARCA4 and is involved in the differentiation of mucinous colorectal adenocarcinoma[J]. Mol Oncol, 2022, 16(19): 3509-3532.
[1] 梁永媛,蔡培飞,郑桂喜. 基于多检验变量和机器学习算法的结肠癌诊断模型建立及价值评估[J]. 山东大学学报 (医学版), 2024, 62(2): 51-59.
[2] 孙菁果,朱文帅,鲁艺,马晓丽,郏雁飞. 幽门螺杆菌感染对胃癌细胞m6A水平的影响及其机制[J]. 山东大学学报 (医学版), 2023, 61(9): 10-18.
[3] 董雅琪,王新慧,赵颖慧,王传新. 血清外泌体LINC02163作为结直肠癌远处转移标志物的临床价值[J]. 山东大学学报 (医学版), 2023, 61(9): 19-28.
[4] 郑荣慧,李攀,曹秀琴,贺瑞霞,陈民佳,陈海霞,杨志伟. SQSTM1蛋白在嗜肺军团菌感染RAW264.7细胞自噬中的作用机制[J]. 山东大学学报 (医学版), 2023, 61(6): 10-21.
[5] 任慧欣,郑茂金,韩文灿,王超群,周云,裴冬生. 过氧化氢通过调控自噬增强宫颈癌的放疗敏感性[J]. 山东大学学报 (医学版), 2023, 61(6): 22-28.
[6] 何静,严如根,武志红,李长忠. 消癥抑癌方对卵巢癌SKOV3细胞增殖、迁移的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 1-10.
[7] 常晴,刘佳,曲爱林,杨咏梅. 利用数据库信息分析NAMPT与肝癌的病理特征和免疫浸润的关联性[J]. 山东大学学报 (医学版), 2023, 61(4): 26-36.
[8] 郭崇勇,赵朋,刘海盟,王强, 贾宗师,张建. 胸前丘疹为首发表现的胃癌1例[J]. 山东大学学报 (医学版), 2023, 61(4): 119-120.
[9] 邵长秀,贺青卿,庄晓璇,李小磊,周鹏,岳涛,高远,徐婧,李陈钰,郭浩男,庄大勇. 934例甲状腺微小乳头状癌颈淋巴结部位转移及危险因素[J]. 山东大学学报 (医学版), 2023, 61(2): 57-64.
[10] 张建树,张瀚文,赵文静. 长链非编码RNA ZNF528-AS1促进乳腺癌他莫昔芬耐药及进展转移[J]. 山东大学学报 (医学版), 2023, 61(1): 17-26.
[11] 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49.
[12] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[13] 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29.
[14] 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82.
[15] 马瑞杰,朱良明,左太阳,李春海,张楠,孙志钢. 微波消融治疗非小细胞肺癌根治术后肺寡转移瘤的预后分析[J]. 山东大学学报 (医学版), 2022, 60(12): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!