您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (11): 8-17.doi: 10.6040/j.issn.1671-7554.0.2025.0294

• 基础医学 • 上一篇    

NEDD4样E3泛素蛋白连接酶通过介导果糖二磷酸A的泛素化修饰调控胶质母细胞瘤细胞铁死亡敏感性

聂秋成1,2,李云峰2,田静3,刘辛靖1,2,孙丽丽1,2,魏义举1,2   

  1. 1.山东第一医科大学生命科学学院, 山东 泰安 271016;2.山东第一医科大学医学科技创新中心, 山东 济南 250117;3.山东第一医科大学第二附属医院输血科, 山东 泰安 271016
  • 发布日期:2025-11-28
  • 通讯作者: 魏义举. E-mail:weiyiju@sdfmu.edu.cn
  • 基金资助:
    国家自然科学基金(82473420);泰山学者青年专家项目(tsqn202211225);山东省医药卫生科技项目(202402050941,202402050918);山东省自然科学基金(ZR2024QC208)

NEDD4L regulates ferroptosis by mediating ubiquitination of ALDOA in glioblastoma cells

NIE Qiucheng1,2, LI Yunfeng2, TIAN Jing3, LIU Xinjing1,2, SUN Lili1,2, WEI Yiju1,2   

  1. 1. College of Life Sciences, Shandong First Medical University, Taian 271016, Shandong, China;
    2. Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, Shandong, China;
    3. Department of Blood Transfusion, Second Affiliated Hospital of Shandong First Medical University, Taian 271016, Shandong, China
  • Published:2025-11-28

摘要: 目的 探讨神经前体细胞表达发育性下调蛋白4(neural precursor cell expressed developmentally down-regulated 4 like, NEDD4L)介导胶质母细胞瘤(glioblastoma, GBM)铁死亡的作用,揭示NEDD4L介导醛缩酶(aldolase A, ALDOA,又名果糖二磷酸 A)的泛素化修饰在铁死亡信号通路中的调控机制。 方法 对TCGA-GBM数据库中NEDD4L基因表达水平进行分析,利用shRNA/CRISPR-Cas9技术在GBM LN229细胞中敲低/除NEDD4L,通过细胞死亡和脂质过氧化实验观察敲低NEDD4L表达对GBM铁死亡敏感性的影响,并利用蛋白质免疫共沉淀(co-immunoprecipitation, CO-IP)、免疫印记等实验鉴定ALDOA是NEDD4L的潜在修饰底物,通过siRNA方法敲低NEDD4L或ALDOA后检测其对GBM细胞铁死亡及铁死亡通路的影响。所有数据均使用 GraphPad Prism 9.0 软件进行统计分析。 结果 敲除NEDD4L明显抑制IKE诱导的铁死亡发生,同时显著降低GBM细胞内的脂质过氧化水平(P<0.001),鉴定NEDD4L是ALDOA新的E3泛素化连接酶,并与ALDOA相互作用介导其单泛素化修饰,调控GBM细胞铁死亡易感性。敲低NEDD4L和ALDOA的表达均增强4EBP1和ACC的磷酸化水平以及上调GPX4蛋白的表达。 结论 NEDD4L介导ALDOA的单泛素化修饰并可能通过影响mTORC1-4EBP1信号通路和脂质代谢促进GBM细胞的铁死亡敏感性。

关键词: 胶质母细胞瘤, 神经前体细胞表达发育性下调蛋白4, 果糖二磷酸A, 泛素化, 铁死亡

Abstract: Objective To investigate the role of the E3 ubiquitin ligase neural precursor cell expressed developmentally down-regulated 4 like(NEDD4L)-mediating ferroptosis in glioblastoma, aiming to elucidate molecular mechanism of NEDD4L-mediated ubiquitination of aldolase A(ALDOA)which regulates ferroptosis pathway. Methods The effects of knockdown of NEDD4L on ferroptosis in glioblastoma(GBM)were assessed through cell death and lipid peroxidation assays. ALDOA was identified as a potential substrate modified by NEDD4L using protein Western blotting and co-immunoprecipitation(Co-IP)techniques. The impact of NEDD4L or ALDOA on ferroptosis and ferroptosis-related pathways in GBM cells were further investigated using siRNA/shRNA or CRISPR-Cas9 technology. Results Knockdown of NEDD4L significantly inhibited IKE-induced ferroptosis and reduced lipid peroxidation levels in GBM cells. This study validated NEDD4L as a novel E3 ubiquitin ligase for ALDOA, demonstrating its interaction with ALDOA to mediate monoubiquitination, thereby modulating GBM cell susceptibility to ferroptosis. Additionally, the knockdown of both NEDD4L and ALDOA promoted phosphorylation of 4EBP1 and ACC, and increased the expression of GPX4 protein, which suggested that NEDD4L-mediated ubiquitination of ALDOA might regulate ferroptosis susceptibility in GBM cells through the mTORC1-4EBP1 signalling pathway and lipid metabolism. All data were statistically analyzed using GraphPad Prism 9.0 software. Conclusion NEDD4L has been shown to mediate monoubiquitination of ALDOA, with potential to promote ferroptosis sensitivity by affecting the mTORC1-4EBP1 signaling pathway and lipid metabolism in GBM cells.

Key words: Glioblastoma, Neural precursor cell expressed developmentally down-regulated 4 like, Aldolase A, Ubiquitination, Ferroptosis

中图分类号: 

  • R574
[1] Gritsch S, Batchelor TT, Gonzalez Castro LN. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system[J]. Cancer, 2022, 128(1): 47-58.
[2] Jiang XJ, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
[3] Dixon SJ, Olzmann JA. The cell biology of ferroptosis[J]. Nat Rev Mol Cell Biol, 2024, 25(6): 424-442.
[4] Yee PP, Wei YJ, Kim SY, et al. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression[J]. Nat Commun, 2020, 11(1): 5424. doi: 10.1038/s41467-020-19193-y
[5] Liu TQ, Zhu C, Chen X, et al. Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance[J]. Neuro Oncol, 2022, 24(7): 1113-1125.
[6] Yan YL, Zhou SJ, Chen X, et al. Suppression of ITPKB degradation by Trim25 confers TMZ resistance in glioblastoma through ROS homeostasis[J]. Signal Transduct Target Ther, 2024, 9(1): 58. doi: 10.1038/s41392-024-01763-x
[7] 洪喆, 毛欣晨, 侯翔云, 等. 脑胶质瘤与铁死亡研究进展 [J]. 肿瘤学杂志, 2024, 30(3): 236-244. HONG Zhe, MAO Xinchen, HOU Xiangyun, et al. Research progress on relationship between brain glioma and ferroptosis [J]. Journal of Chinese Oncology, 2024, 30(3): 236-244.
[8] Minami JK, Morrow D, Bayley NA, et al. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis[J]. Cancer Cell, 2023, 41(6): 1048-1060.e9.
[9] 王文佳, 夏启龙, 张迪, 等. 铁死亡通路泛素化调控的研究进展 [J]. 华中科技大学学报(医学版)2024, 53(4): 528-534. WANG Wenjia, XIA Qilong, ZHANG Di, et al. Research advances in the ubiquitination regulation of ferroptosis pathways [J]. Journal of Huazhong University of Science and Technology(Medical Sciences), 2024, 53(4): 528-534.
[10] Zhou YJ, Zhao Z, Jiang C, et al. LINC01088 prevents ferroptosis in glioblastoma by enhancing SLC7A11 via HLTF/USP7 axis[J]. Clin Transl Med, 2025, 15(3): e70257. doi: 10.1002/ctm2.70257
[11] Li DB, Wang YH, Dong C, et al. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1[J]. Oncogene, 2023, 42(2): 83-98.
[12] Anandhan A, Dodson M, Shakya A, et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8[J]. Sci Adv, 2023, 9(5): eade9585. doi: 10.1126/sciadv.ade9585
[13] Bao ZY, Liu YL, Chen BL, et al. Prokineticin-2 prevents neuronal cell deaths in a model of traumatic brain injury[J]. Nat Commun, 2021, 12(1): 4220. doi: 10.1038/s41467-021-24469-y
[14] Zhou QY, Yu HF, Chen YX, et al. The CRL3KCTD10 ubiquitin ligase-USP18 axis coordinately regulates cystine uptake and ferroptosis by modulating SLC7A11[J]. Proc Natl Acad Sci USA, 2024, 121(28): e2320655121. doi: 10.1073/pnas.2320655121
[15] Yang JJ, Zhou YL, Xie SD, et al. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 206. doi: 10.1186/s13046-021-02012-7
[16] Liang JJ, Wang N, Yao YH, et al. NEDD4L mediates intestinal epithelial cell ferroptosis to restrict inflammatory bowel diseases and colorectal tumorigenesis[J]. J Clin Invest, 2024, 135(3): e173994. doi: 10.1172/JCI173994
[17] Wang Y, Liu Y, Liu J, et al. NEDD4L-mediated LTF protein degradation limits ferroptosis[J]. Biochem Biophys Res Commun, 2020, 531(4): 581-587.
[18] Chen Z, Wang WL, Hou JH, et al. NEDD4L contributes to ferroptosis and cell growth inhibition in esophageal squamous cell carcinoma by facilitating xCT ubiquitination[J]. Cell Death Discov, 2024, 10: 473. doi: 10.1038/s41420-024-02243-5
[19] Wei YJ, Yee PP, Liu ZJ, et al. NEDD4L-mediated Merlin ubiquitination facilitates Hippo pathway activation[J]. EMBO Rep, 2020, 21(12): e50642. doi: 10.15252/embr.202050642
[20] Valerius AR, Webb LM, Sener U. Novel clinical trials and approaches in the management of glioblastoma[J]. Curr Oncol Rep, 2024, 26(5): 439-465.
[21] 王剑, 周文婧, 薛知, 等. 脑胶质母细胞瘤模型研究概况及类脑模型的研发应用 [J]. 山东大学学报(医学版), 2020, 58(8): 74-80. WANG Jian, ZHOU Wenjing, XUE Zhi, et al. Research overview of glioblastoma models and development application of brain-like models [J]. Journal of Shandong University(Health Sciences), 2020, 58(8): 74-80.
[22] de Souza I, Monteiro LS, Guedes CB, et al. High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation[J]. Cell Death Dis, 2022, 13(7): 591. doi: 10.1038/s41419-022-05044-9
[23] Wang YM, Wu XR, Ren Z, et al. Overcoming cancer chemotherapy resistance by the induction of ferroptosis[J]. Drug Resist Updat, 2023, 66: 100916. doi: 10.1016/j.drup.2022.100916
[24] Sehm T, Rauh M, Wiendieck K, et al. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis[J]. Oncotarget, 2016, 7(46): 74630-74647.
[25] Liu X, Wang W, Nie QC, et al. The role and mechanisms of ubiquitin-proteasome system-mediated ferroptosis in neurological disorders[J]. Neurosci Bull, 2025, 41(4): 691-706.
[26] 陈安静, 张训. 靶向小类泛素化修饰的胶质瘤治疗新策略 [J]. 山东大学学报(医学版), 2020, 58(8): 88-94. CHEN Anjing, ZHANG Xun. Novel therapeutic strategies for glioma targeting SUMOylation [J]. Journal of Shandong University(Health Sciences), 2020, 58(8): 88-94.
[27] He SM, Deng JP, Li G, et al. Down-regulation of Nedd4L is associated with the aggressive progression and worse prognosis of malignant glioma[J]. Jpn J Clin Oncol, 2012, 42(3): 196-201.
[28] Liu J, Kang R, Tang DL. Metabolic checkpoint of ferroptosis resistance[J]. Mol Cell Oncol, 2021, 8(3): 1901558. doi: 10.1080/23723556.2021.1901558
[29] Wu SQ, Mao C, Kondiparthi L, et al. A ferroptosis defense mechanism mediated by glycerol-3-phosphate dehydrogenase 2 in mitochondria[J]. Proc Natl Acad Sci USA, 2022, 119(26): e2121987119. doi: 10.1073/pnas.2121987119
[30] Song XX, Liu J, Kuang FM, et al. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis[J]. Cell Rep, 2021, 34(8): 108767. doi: 10.1016/j.celrep.2021.108767
[31] Li MQ, Zhang CS, Feng JW, et al. Aldolase is a sensor for both low and high glucose, linking to AMPK and mTORC1[J]. Cell Res, 2021, 31(4): 478-481.
[32] Luo K, Liu AQ, Wu H, et al. CircKIF4A promotes glioma growth and temozolomide resistance by accelerating glycolysis[J]. Cell Death Dis, 2022, 13(8): 740. doi: 10.1038/s41419-022-05175-z
[33] Ji SR, Zhang B, Liu J, et al. ALDOA functions as an oncogene in the highly metastatic pancreatic cancer[J]. Cancer Lett, 2016, 374(1): 127-135.
[34] Niu Y, Lin ZY, Wan A, et al. Loss-of-function genetic screening identifies aldolase a as an essential driver for liver cancer cell growth under hypoxia[J]. Hepatology, 2021, 74(3): 1461-1479.
[1] 牛帅,吴学君. 铁死亡在腹主动脉瘤中的研究进展[J]. 山东大学学报 (医学版), 2024, 62(9): 74-79.
[2] 孙丛丛,崔文静,张锦涛,张东,刘晓菲,潘云,亓倩,徐嘉蔚,曾荣,郭红喜,董亮. 铁死亡在支气管哮喘气道重塑中的作用[J]. 山东大学学报 (医学版), 2024, 62(7): 1-9.
[3] 刘海霞,皇甫莎莎,桑晓玉,崔东清,毕建忠,王萍. 间充质干细胞对实验性自身免疫性脑脊髓炎小鼠铁死亡的影响[J]. 山东大学学报 (医学版), 2024, 62(6): 1-8.
[4] 沈海涛,乔亚琴,董萍,路燕. Toll样受体4调控的程序性坏死和铁死亡对对乙酰氨基酚肝损伤的影响[J]. 山东大学学报 (医学版), 2024, 62(4): 1-8.
[5] 姜卉,魏甜,李建平,王聪. 葛根素对索拉非尼心肌毒性的保护及作用机制[J]. 山东大学学报 (医学版), 2022, 60(8): 14-22.
[6] 时萧寒,李华玉,李峰. 接受Stupp方案治疗的老年胶质母细胞瘤患者预后的影响因素[J]. 山东大学学报 (医学版), 2022, 60(10): 42-48.
[7] 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55.
[8] 陈安静,张训. 靶向小类泛素化修饰的胶质瘤治疗新策略[J]. 山东大学学报 (医学版), 2020, 1(8): 88-94.
[9] 王剑,周文婧,薛知易,刘晓菲. 脑胶质母细胞瘤模型研究概况及类脑模型的研发应用[J]. 山东大学学报 (医学版), 2020, 1(8): 74-80.
[10] 田宝睿,张永超,韩晓阳,田颖颖,王传玺. 利用数据库预测基因与胶质母细胞瘤的关联[J]. 山东大学学报 (医学版), 2020, 58(6): 8-13.
[11] 孔娟,张珍,郭伟, 韩萍. 利用网络数据库预测脂肪因子APLN、NUCB2、RARRES2在胶质母细胞瘤中的表达[J]. 山东大学学报 (医学版), 2019, 57(6): 61-67.
[12] 韩晓, 薛皓, 闫绍峰, 郭兴, 李彤, 郭小凡, 高校, 李刚. miR-584对人胶质母细胞瘤侵袭和迁移能力的影响[J]. 山东大学学报(医学版), 2015, 53(4): 16-21.
[13] 梁楠,刘滨,范海涛,辛涛,郭华,刘威,赵光宇,栾立明,许尚臣,庞琦. 多形性胶质母细胞瘤患者高迁移率蛋白A1表达与复发时间的关系[J]. 山东大学学报(医学版), 2013, 51(4): 59-61.
[14] 卢国栋,袁明振,俎树禄,赵升田. SPOP蛋白在肾透明细胞癌中的表达[J]. 山东大学学报(医学版), 2012, 50(7): 74-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!