山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (11): 8-17.doi: 10.6040/j.issn.1671-7554.0.2025.0294
• 基础医学 • 上一篇
聂秋成1,2,李云峰2,田静3,刘辛靖1,2,孙丽丽1,2,魏义举1,2
NIE Qiucheng1,2, LI Yunfeng2, TIAN Jing3, LIU Xinjing1,2, SUN Lili1,2, WEI Yiju1,2
摘要: 目的 探讨神经前体细胞表达发育性下调蛋白4(neural precursor cell expressed developmentally down-regulated 4 like, NEDD4L)介导胶质母细胞瘤(glioblastoma, GBM)铁死亡的作用,揭示NEDD4L介导醛缩酶(aldolase A, ALDOA,又名果糖二磷酸 A)的泛素化修饰在铁死亡信号通路中的调控机制。 方法 对TCGA-GBM数据库中NEDD4L基因表达水平进行分析,利用shRNA/CRISPR-Cas9技术在GBM LN229细胞中敲低/除NEDD4L,通过细胞死亡和脂质过氧化实验观察敲低NEDD4L表达对GBM铁死亡敏感性的影响,并利用蛋白质免疫共沉淀(co-immunoprecipitation, CO-IP)、免疫印记等实验鉴定ALDOA是NEDD4L的潜在修饰底物,通过siRNA方法敲低NEDD4L或ALDOA后检测其对GBM细胞铁死亡及铁死亡通路的影响。所有数据均使用 GraphPad Prism 9.0 软件进行统计分析。 结果 敲除NEDD4L明显抑制IKE诱导的铁死亡发生,同时显著降低GBM细胞内的脂质过氧化水平(P<0.001),鉴定NEDD4L是ALDOA新的E3泛素化连接酶,并与ALDOA相互作用介导其单泛素化修饰,调控GBM细胞铁死亡易感性。敲低NEDD4L和ALDOA的表达均增强4EBP1和ACC的磷酸化水平以及上调GPX4蛋白的表达。 结论 NEDD4L介导ALDOA的单泛素化修饰并可能通过影响mTORC1-4EBP1信号通路和脂质代谢促进GBM细胞的铁死亡敏感性。
中图分类号:
| [1] Gritsch S, Batchelor TT, Gonzalez Castro LN. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system[J]. Cancer, 2022, 128(1): 47-58. [2] Jiang XJ, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. [3] Dixon SJ, Olzmann JA. The cell biology of ferroptosis[J]. Nat Rev Mol Cell Biol, 2024, 25(6): 424-442. [4] Yee PP, Wei YJ, Kim SY, et al. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression[J]. Nat Commun, 2020, 11(1): 5424. doi: 10.1038/s41467-020-19193-y [5] Liu TQ, Zhu C, Chen X, et al. Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance[J]. Neuro Oncol, 2022, 24(7): 1113-1125. [6] Yan YL, Zhou SJ, Chen X, et al. Suppression of ITPKB degradation by Trim25 confers TMZ resistance in glioblastoma through ROS homeostasis[J]. Signal Transduct Target Ther, 2024, 9(1): 58. doi: 10.1038/s41392-024-01763-x [7] 洪喆, 毛欣晨, 侯翔云, 等. 脑胶质瘤与铁死亡研究进展 [J]. 肿瘤学杂志, 2024, 30(3): 236-244. HONG Zhe, MAO Xinchen, HOU Xiangyun, et al. Research progress on relationship between brain glioma and ferroptosis [J]. Journal of Chinese Oncology, 2024, 30(3): 236-244. [8] Minami JK, Morrow D, Bayley NA, et al. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis[J]. Cancer Cell, 2023, 41(6): 1048-1060.e9. [9] 王文佳, 夏启龙, 张迪, 等. 铁死亡通路泛素化调控的研究进展 [J]. 华中科技大学学报(医学版)2024, 53(4): 528-534. WANG Wenjia, XIA Qilong, ZHANG Di, et al. Research advances in the ubiquitination regulation of ferroptosis pathways [J]. Journal of Huazhong University of Science and Technology(Medical Sciences), 2024, 53(4): 528-534. [10] Zhou YJ, Zhao Z, Jiang C, et al. LINC01088 prevents ferroptosis in glioblastoma by enhancing SLC7A11 via HLTF/USP7 axis[J]. Clin Transl Med, 2025, 15(3): e70257. doi: 10.1002/ctm2.70257 [11] Li DB, Wang YH, Dong C, et al. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1[J]. Oncogene, 2023, 42(2): 83-98. [12] Anandhan A, Dodson M, Shakya A, et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8[J]. Sci Adv, 2023, 9(5): eade9585. doi: 10.1126/sciadv.ade9585 [13] Bao ZY, Liu YL, Chen BL, et al. Prokineticin-2 prevents neuronal cell deaths in a model of traumatic brain injury[J]. Nat Commun, 2021, 12(1): 4220. doi: 10.1038/s41467-021-24469-y [14] Zhou QY, Yu HF, Chen YX, et al. The CRL3KCTD10 ubiquitin ligase-USP18 axis coordinately regulates cystine uptake and ferroptosis by modulating SLC7A11[J]. Proc Natl Acad Sci USA, 2024, 121(28): e2320655121. doi: 10.1073/pnas.2320655121 [15] Yang JJ, Zhou YL, Xie SD, et al. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 206. doi: 10.1186/s13046-021-02012-7 [16] Liang JJ, Wang N, Yao YH, et al. NEDD4L mediates intestinal epithelial cell ferroptosis to restrict inflammatory bowel diseases and colorectal tumorigenesis[J]. J Clin Invest, 2024, 135(3): e173994. doi: 10.1172/JCI173994 [17] Wang Y, Liu Y, Liu J, et al. NEDD4L-mediated LTF protein degradation limits ferroptosis[J]. Biochem Biophys Res Commun, 2020, 531(4): 581-587. [18] Chen Z, Wang WL, Hou JH, et al. NEDD4L contributes to ferroptosis and cell growth inhibition in esophageal squamous cell carcinoma by facilitating xCT ubiquitination[J]. Cell Death Discov, 2024, 10: 473. doi: 10.1038/s41420-024-02243-5 [19] Wei YJ, Yee PP, Liu ZJ, et al. NEDD4L-mediated Merlin ubiquitination facilitates Hippo pathway activation[J]. EMBO Rep, 2020, 21(12): e50642. doi: 10.15252/embr.202050642 [20] Valerius AR, Webb LM, Sener U. Novel clinical trials and approaches in the management of glioblastoma[J]. Curr Oncol Rep, 2024, 26(5): 439-465. [21] 王剑, 周文婧, 薛知, 等. 脑胶质母细胞瘤模型研究概况及类脑模型的研发应用 [J]. 山东大学学报(医学版), 2020, 58(8): 74-80. WANG Jian, ZHOU Wenjing, XUE Zhi, et al. Research overview of glioblastoma models and development application of brain-like models [J]. Journal of Shandong University(Health Sciences), 2020, 58(8): 74-80. [22] de Souza I, Monteiro LS, Guedes CB, et al. High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation[J]. Cell Death Dis, 2022, 13(7): 591. doi: 10.1038/s41419-022-05044-9 [23] Wang YM, Wu XR, Ren Z, et al. Overcoming cancer chemotherapy resistance by the induction of ferroptosis[J]. Drug Resist Updat, 2023, 66: 100916. doi: 10.1016/j.drup.2022.100916 [24] Sehm T, Rauh M, Wiendieck K, et al. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis[J]. Oncotarget, 2016, 7(46): 74630-74647. [25] Liu X, Wang W, Nie QC, et al. The role and mechanisms of ubiquitin-proteasome system-mediated ferroptosis in neurological disorders[J]. Neurosci Bull, 2025, 41(4): 691-706. [26] 陈安静, 张训. 靶向小类泛素化修饰的胶质瘤治疗新策略 [J]. 山东大学学报(医学版), 2020, 58(8): 88-94. CHEN Anjing, ZHANG Xun. Novel therapeutic strategies for glioma targeting SUMOylation [J]. Journal of Shandong University(Health Sciences), 2020, 58(8): 88-94. [27] He SM, Deng JP, Li G, et al. Down-regulation of Nedd4L is associated with the aggressive progression and worse prognosis of malignant glioma[J]. Jpn J Clin Oncol, 2012, 42(3): 196-201. [28] Liu J, Kang R, Tang DL. Metabolic checkpoint of ferroptosis resistance[J]. Mol Cell Oncol, 2021, 8(3): 1901558. doi: 10.1080/23723556.2021.1901558 [29] Wu SQ, Mao C, Kondiparthi L, et al. A ferroptosis defense mechanism mediated by glycerol-3-phosphate dehydrogenase 2 in mitochondria[J]. Proc Natl Acad Sci USA, 2022, 119(26): e2121987119. doi: 10.1073/pnas.2121987119 [30] Song XX, Liu J, Kuang FM, et al. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis[J]. Cell Rep, 2021, 34(8): 108767. doi: 10.1016/j.celrep.2021.108767 [31] Li MQ, Zhang CS, Feng JW, et al. Aldolase is a sensor for both low and high glucose, linking to AMPK and mTORC1[J]. Cell Res, 2021, 31(4): 478-481. [32] Luo K, Liu AQ, Wu H, et al. CircKIF4A promotes glioma growth and temozolomide resistance by accelerating glycolysis[J]. Cell Death Dis, 2022, 13(8): 740. doi: 10.1038/s41419-022-05175-z [33] Ji SR, Zhang B, Liu J, et al. ALDOA functions as an oncogene in the highly metastatic pancreatic cancer[J]. Cancer Lett, 2016, 374(1): 127-135. [34] Niu Y, Lin ZY, Wan A, et al. Loss-of-function genetic screening identifies aldolase a as an essential driver for liver cancer cell growth under hypoxia[J]. Hepatology, 2021, 74(3): 1461-1479. |
| [1] | 牛帅,吴学君. 铁死亡在腹主动脉瘤中的研究进展[J]. 山东大学学报 (医学版), 2024, 62(9): 74-79. |
| [2] | 孙丛丛,崔文静,张锦涛,张东,刘晓菲,潘云,亓倩,徐嘉蔚,曾荣,郭红喜,董亮. 铁死亡在支气管哮喘气道重塑中的作用[J]. 山东大学学报 (医学版), 2024, 62(7): 1-9. |
| [3] | 刘海霞,皇甫莎莎,桑晓玉,崔东清,毕建忠,王萍. 间充质干细胞对实验性自身免疫性脑脊髓炎小鼠铁死亡的影响[J]. 山东大学学报 (医学版), 2024, 62(6): 1-8. |
| [4] | 沈海涛,乔亚琴,董萍,路燕. Toll样受体4调控的程序性坏死和铁死亡对对乙酰氨基酚肝损伤的影响[J]. 山东大学学报 (医学版), 2024, 62(4): 1-8. |
| [5] | 姜卉,魏甜,李建平,王聪. 葛根素对索拉非尼心肌毒性的保护及作用机制[J]. 山东大学学报 (医学版), 2022, 60(8): 14-22. |
| [6] | 时萧寒,李华玉,李峰. 接受Stupp方案治疗的老年胶质母细胞瘤患者预后的影响因素[J]. 山东大学学报 (医学版), 2022, 60(10): 42-48. |
| [7] | 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55. |
| [8] | 陈安静,张训. 靶向小类泛素化修饰的胶质瘤治疗新策略[J]. 山东大学学报 (医学版), 2020, 1(8): 88-94. |
| [9] | 王剑,周文婧,薛知易,刘晓菲. 脑胶质母细胞瘤模型研究概况及类脑模型的研发应用[J]. 山东大学学报 (医学版), 2020, 1(8): 74-80. |
| [10] | 田宝睿,张永超,韩晓阳,田颖颖,王传玺. 利用数据库预测基因与胶质母细胞瘤的关联[J]. 山东大学学报 (医学版), 2020, 58(6): 8-13. |
| [11] | 孔娟,张珍,郭伟, 韩萍. 利用网络数据库预测脂肪因子APLN、NUCB2、RARRES2在胶质母细胞瘤中的表达[J]. 山东大学学报 (医学版), 2019, 57(6): 61-67. |
| [12] | 韩晓, 薛皓, 闫绍峰, 郭兴, 李彤, 郭小凡, 高校, 李刚. miR-584对人胶质母细胞瘤侵袭和迁移能力的影响[J]. 山东大学学报(医学版), 2015, 53(4): 16-21. |
| [13] | 梁楠,刘滨,范海涛,辛涛,郭华,刘威,赵光宇,栾立明,许尚臣,庞琦. 多形性胶质母细胞瘤患者高迁移率蛋白A1表达与复发时间的关系[J]. 山东大学学报(医学版), 2013, 51(4): 59-61. |
| [14] | 卢国栋,袁明振,俎树禄,赵升田. SPOP蛋白在肾透明细胞癌中的表达[J]. 山东大学学报(医学版), 2012, 50(7): 74-77. |
|
||