山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (9): 74-79.doi: 10.6040/j.issn.1671-7554.0.2024.0496
• 主动脉疾病基础与临床研究进展专刊—研究进展 • 上一篇
牛帅,吴学君
NIU Shuai, WU Xuejun
摘要: 腹主动脉瘤在高龄人群中发病率高、破裂风险大,是血管外科常见的危重急症,然而目前还缺少腹主动脉瘤有效的治疗药物或靶点。铁死亡是近几年新发现的一种可调控的细胞死亡方式,特点是依赖于铁离子和脂质过氧化物堆积。铁死亡广泛参与了心血管、肿瘤、神经系统等多种疾病的发生发展,本文回顾近5年铁死亡与腹主动脉瘤的相关研究进展,总结铁死亡的主要机制及其在腹主动脉瘤中的作用,发现铁死亡可能通过影响血管平滑肌细胞的衰老、死亡和表型转换等来参与腹主动脉瘤的进展,提出铁死亡有望成为腹主动脉瘤防治的新靶点。
中图分类号:
[1] 中华医学会外科学分会血管外科学组. 腹主动脉瘤诊断和治疗中国专家共识(2022版)[J]. 中国实用外科杂志, 2022, 42(4): 380-387. Society for Vascular Surgery, Chinese Society of Surgery, Chinese Medical Association. Chinese expert consensus on the diagnosis and treatment of abdominal aortic aneurysm(2022 edition)[J]. Chinese Journal of Practical Surgery, 2022, 42(4): 380-387. [2] 种振岳, 王默, 高斌斌, 等. 腹主动脉瘤破裂的外科急救(附19例报告)[J]. 山东大学学报(医学版), 2010, 48(8): 111-112, 116. ZHONG Zhenyue, WANG Mo, GAO Binbin, et al. Experience of emergency surgery on ruptured abdominal aortic aneurysm(a report of 19 cases)[J]. Journal of Shandong University(Health Sciences), 2010, 48(8): 111-112, 116. [3] Lu HC, Du W, Ren L, et al. Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms[J]. J Am Heart Assoc, 2021, 10(24): e023601. doi:10.1161/JAHA.121.023601. [4] Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541. [5] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. [6] Wu XG, Li Y, Zhang SC, et al. Ferroptosis as a novel therapeutic target for cardiovascular disease[J]. Theranostics, 2021, 11(7): 3052-3059. [7] Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. [8] Ding XS, Gao L, Han Z, et al. Ferroptosis in Parkinsons disease: molecular mechanisms and therapeutic potential[J]. Ageing Res Rev, 2023, 91: 102077. doi:10.1016/j.arr.2023.102077. [9] Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. [10] Feng HZ, Stockwell BR. Unsolved mysteries: how does lipid peroxidation cause ferroptosis?[J]. PLoS Biol, 2018, 16(5): e2006203. doi:10.1371/journal.pbio.2006203. [11] Jiang L, Kon N, Li TY, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. [12] Conrad M, Proneth B. Selenium: tracing another essential element of ferroptotic cell death[J]. Cell Chem Biol, 2020, 27(4): 409-419. [13] Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698. [14] Bersuker K, Hendricks JM, Li ZP, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. [15] Soula M, Weber RA, Zilka O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers[J]. Nat Chem Biol, 2020, 16(12): 1351-1360. [16] Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6(1): 41-53. [17] Yin HY, Xu LB, Porter NA. Free radical lipid peroxidation: mechanisms and analysis[J]. Chem Rev, 2011, 111(10): 5944-5972. [18] Conrad M, Pratt DA. The chemical basis of ferroptosis[J]. Nat Chem Biol, 2019, 15(12): 1137-1147. [19] Kagan VE, Mao GW, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. [20] Gao MH, Monian P, Pan QH, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9): 1021-1032. [21] Jelinek A, Heyder L, Daude M, et al. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis[J]. Free Radic Biol Med, 2018, 117: 45-57. doi:10.1016/j.free-radbiomed.2018.01.019. [22] Lee H, Zandkarimi F, Zhang YL, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234. [23] Gao MH, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59(2): 298-308. [24] Shin D, Lee J, You JH, et al. Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer[J]. Redox Biol, 2020, 30: 101418. doi:10.1016/j.redox.2019.101418. [25] Sawada H, Hao H, Naito Y, et al. Aortic iron overload with oxidative stress and inflammation in human and murine abdominal aortic aneurysm[J]. Arterioscler Thromb Vasc Biol, 2015, 35(6): 1507-1514. [26] Delbosc S, Diallo D, Dejouvencel T, et al. Impaired high-density lipoprotein anti-oxidant capacity in human abdominal aortic aneurysm[J]. Cardiovasc Res, 2013, 100(2): 307-315. [27] Sun DY, Wu WB, Wu JJ, et al. Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence[J]. Nat Commun, 2024, 15(1): 1429. doi:10.1038/S41467-024-45823-w. [28] Schoenmakers E, Marelli F, Jørgensen HF, et al. Selenoprotein deficiency disorder predisposes to aortic aneurysm formation[J]. Nat Commun, 2023, 14(1): 7994. doi:10.1038/S41467-023-43851-6. [29] Colie S, Pecher C, Girolami JP, et al. Modulation by bradykinin and nitric oxide of angiotensin II-induced apoptosis in a vascular smooth muscle cell phenotype[J]. Int Immunopharmacol, 2008, 8(2): 231-236. [30] Ji QX, Zeng FY, Zhou J, et al. Ferroptotic stress facilitates smooth muscle cell dedifferentiation in arterial remodelling by disrupting mitochondrial homeostasis[J]. Cell Death Differ, 2023, 30(2): 457-474. [31] Zhang SC, Bei YR, Huang YL, et al. Induction of ferroptosis promotes vascular smooth muscle cell phenotypic switching and aggravates neointimal hyperplasia in mice[J]. Mol Med, 2022, 28(1): 121. doi:10.1186/S10020-022-00549-7. [32] Chen Y, Yi X, Huo B, et al. BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection[J]. Pharmacol Res, 2022, 177: 106122. doi:10.1016/j.phrs.2022.106122. [33] Bai T, Li MX, Liu YF, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell[J]. Free Radic Biol Med, 2020, 160: 92-102. doi: 10.1016/j.freeradbiomed.2020.07.026. [34] Li L, Wang HN, Zhang J, et al. Effect of endothelial progenitor cell-derived extracellular vesicles on endothelial cell ferroptosis and atherosclerotic vascular endothelial injury[J]. Cell Death Discov, 2021, 7(1): 235. doi:10.1038/S41420-021-00610-0. [35] Wu ZN, Chen TW, Qian YX, et al. High-dose ionizing radiation accelerates atherosclerotic plaque progression by regulating P38/NCOA4-mediated ferritinophagy/ferroptosis of endothelial cells[J]. Int J Radiat Oncol Biol Phys, 2023, 117(1): 223-236. [36] Ma HT, Huang YT, Tian WR, et al. Endothelial transferrin receptor 1 contributes to thrombogenesis through cascade ferroptosis[J]. Redox Biol, 2024, 70: 103041. doi:10.1016/j.redox.2024.103041. [37] He X, Xiong YC, Liu Y, et al. Ferrostatin-1 inhibits ferroptosis of vascular smooth muscle cells and alleviates abdominal aortic aneurysm formation through activating the SLC7A11/GPX4 axis[J]. FASEB J, 2024, 38(2): e23401. doi:10.1096/fj.202300198RRR. |
[1] | 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-. |
[2] | 卫任,郭伟. 腹主动脉瘤腔内治疗现状[J]. 山东大学学报 (医学版), 2024, 62(9): 13-18. |
[3] | 史潇兮,辛世杰. 腹主动脉瘤的开放手术[J]. 山东大学学报 (医学版), 2024, 62(9): 26-29. |
[4] | 霍正坤,孔祥骞,吴学君. 感染性主动脉瘤诊疗进展[J]. 山东大学学报 (医学版), 2024, 62(9): 42-48. |
[5] | 周永康,孙境,张帅,钱向阳. 胸腹主动脉瘤开放修复脊髓保护策略的研究进展[J]. 山东大学学报 (医学版), 2024, 62(9): 49-54. |
[6] | 范立彬,张鸿坤. 腹主动脉瘤腔内修复术后Ⅱ型内漏的预防及治疗进展[J]. 山东大学学报 (医学版), 2024, 62(9): 55-60. |
[7] | 孙丛丛,崔文静,张锦涛,张东,刘晓菲,潘云,亓倩,徐嘉蔚,曾荣,郭红喜,董亮. 铁死亡在支气管哮喘气道重塑中的作用[J]. 山东大学学报 (医学版), 2024, 62(7): 1-9. |
[8] | 刘海霞,皇甫莎莎,桑晓玉,崔东清,毕建忠,王萍. 间充质干细胞对实验性自身免疫性脑脊髓炎小鼠铁死亡的影响[J]. 山东大学学报 (医学版), 2024, 62(6): 1-8. |
[9] | 林雨洋,王蓓,李菲. 大于10 mm甲状腺乳头状癌侧颈区淋巴结转移预测[J]. 山东大学学报 (医学版), 2024, 62(6): 54-64. |
[10] | 沈海涛,乔亚琴,董萍,路燕. Toll样受体4调控的程序性坏死和铁死亡对对乙酰氨基酚肝损伤的影响[J]. 山东大学学报 (医学版), 2024, 62(4): 1-8. |
[11] | 赵智博,满振涛,李伟. 胆固醇代谢在骨关节炎疾病中的作用及研究进展[J]. 山东大学学报 (医学版), 2024, 62(2): 1-9. |
[12] | 扈艳雯,赵蕙琛,马小莉,刘元涛,张玉超. GLP-1通过细胞色素P450表氧化酶途径抑制氧化应激[J]. 山东大学学报 (医学版), 2023, 61(8): 10-16. |
[13] | 闫丛丛,陈辰,谢倩,王亚楠,张鑫璐,张迎春,武斌. 双酚A暴露对KGN细胞m6A修饰水平的影响[J]. 山东大学学报 (医学版), 2023, 61(8): 17-23. |
[14] | 刘洋,陈贵海. 寒痉汤对冷刺激诱导主动脉平滑肌细胞氧化应激的影响及机制[J]. 山东大学学报 (医学版), 2023, 61(8): 24-30. |
[15] | 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26. |
|