您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (4): 1-8.doi: 10.6040/j.issn.1671-7554.0.2023.1016

• 基础医学 •    

Toll样受体4调控的程序性坏死和铁死亡对对乙酰氨基酚肝损伤的影响

沈海涛,乔亚琴,董萍,路燕   

  1. 安徽医科大学第二附属医院消化内科, 安徽 合肥 230031
  • 发布日期:2024-05-16
  • 通讯作者: 路燕. E-mail:luyancathrine@163.com
  • 基金资助:
    国家自然科学基金青年基金(81800524)

Effects of programmed necrosis and ferroptosis regulated by toll-like receptor 4 on acetaminophen-induced liver injury

SHEN Haitao, QIAO Yaqin, DONG Ping, LU Yan   

  1. Department of Gastroenterology, The Second Hospital of Anhui Medical University, Hefei 230031, Anhui, China
  • Published:2024-05-16

摘要: 目的 探究Toll样受体4(toll-like receptor 4, TLR4)是否通过调控程序性坏死及铁死亡进一步影响对乙酰氨基酚(acetaminophen, APAP)肝损伤过程及其发生机制。 方法 体外培养人正常肝细胞L-02,采用CCK-8法检测细胞活力,筛选出最佳APAP和TAK-242浓度。将实验分为对照组、APAP组(1、4、12 h)和APAP+TAK-242组(1、4、12 h),比较各组细胞TLR4 mRNA表达;检测各组细胞匀浆液的丙氨酸氨基转移酶(alanine aminotransferase, ALT)和天门冬氨酸氨基转移酶(aspartate aminotransferase, AST)水平;检测各组细胞核因子-κB(nuclear factor-κB, NF-κB)、白细胞介素-6(interleukin-6, IL-6)、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)水平;检测各组细胞高迁移率族蛋白1(high mobility group box 1, HMGB1)、受体相互作用蛋白激酶1(receptor interacting protein kinase 1, RIP1)、受体相互作用蛋白激酶3(receptor interacting protein kinase 3, RIP3);检测各组细胞内Fe2+含量以及NF-κB、 P53、重组溶质载体家族7成员11(solute carrier family 7 member 11, SLC7A11)、谷胱甘肽过氧化物酶4(glutathione peroxidase 4, GPX4)水平。 结果 通过CCK-8法,确定5 mmol/L APAP和100 nmol/L TAK-242作为后续实验浓度。与对照组比较,各时间点APAP组TLR4 mRNA水平上调(P<0.05);与APAP组比较,同一时间点APAP+TAK-242组TLR4 mRNA水平下调(P<0.05/3=0.016 7)。与对照组比较,各时间点APAP组ALT、AST水平升高(P<0.05);与APAP组比较,同一时间点APAP+TAK-242组ALT、AST水平下降(P<0.05/3=0.016 7)。与对照组比较,各时间点APAP组NF-κB、IL-6、TNF-α mRNA表达均上调(P<0.05);与APAP组比较,同一时间点APAP+TAK-242组NF-κB、 IL-6、TNF-α mRNA表达均下调(P<0.05/3=0.016 7)。与对照组比较,各时间点APAP组HMGB1、RIP1、RIP3蛋白水平均升高(P<0.05);与APAP组比较,同一时间点APAP+TAK-242组HMGB1、RIP1、RIP3蛋白水平均降低(P<0.05/3=0.0167)。与对照组比较,各时间点APAP组Fe2+含量、NF-κB和P53蛋白水平均上升(P<0.05),而SLC7A11和GPX4蛋白水平和mRNA表达均降低(P<0.05);与APAP组比较,同一时间点APAP+TAK-242组Fe2+含量、NF-κB和P53蛋白水平均降低(P<0.05/3=0.016 7),而SLC7A11和GPX4蛋白水平和mRNA表达均升高(P<0.05/3=0.016 7)。 结论 抑制TLR4可通过调节TLR4/HMGB1信号通路下调程序性坏死,以及可能通过调节TLR4/NF-κB信号通路下调炎症反应和铁死亡来减轻APAP肝损伤。

关键词: 对乙酰氨基酚, Toll样受体4, 程序性坏死, 铁死亡, 炎症

Abstract: Objective To explore whether toll-like receptor 4(TLR4)further affects the process of acetaminophen(APAP)induced liver injury and its mechanism by regulating programmed necrosis and ferroptosis. Methods Human normal hepatocytes L-02 were cultured in vitro and cell viability was detected by the CCK-8 method, and the concentrations of APAP and TAK-242 were evaluated. The experiment was divided into control group, APAP groups(1, 4, 12 h)and APAP+TAK-242 groups(1, 4, 12 h), and the TLR4 mRNA levels were compared in each group. The levels of alanine aminotransferase(ALT)and aspartate aminotransferase(AST)in cell homogenates of different groups were detected; The levels of nuclear factor-κB(NF-κB), interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)were detected in each group; The levels of high mobility group box 1(HMGB1), receptor interacting protein kinase 1(RIP1)and receptor interacting protein kinase 3(RIP3)were detected in each group; The intracellular Fe2+ content and the level of NF-κB, P53, recombinant solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4)were detected in each group. Results The concentration of 5 mmol/L APAP and 100 nmol/L TAK-242 was determined by the CCK-8 method. Compared to the control group, the TLR4 mRNA levels of the APAP groups were positively regulated at each time point(P<0.05); Compared to the APAP groups, the levels of TLR4 mRNA in the APAP+TAK-242 groups were negatively regulated at the corresponding time points(P<0.05/3=0.016 7). Compared to the control group, the levels of ALT and AST in the APAP groups increased at each time point(P<0.05); Compared to the APAP groups, the levels of ALT and AST in the APAP+TAK-242 groups decreased at the corresponding time points(P<0.05/3=0.016 7). Compared to the control group, the mRNA expressions of NF-κB, IL-6 and TNF-α were up-regulated in the APAP groups at each time point(P<0.05); Compared to the APAP groups, the mRNA expressions of NF-κB, IL-6 and TNF-α were all down-regulated in the APAP+TAK-242 groups at the corresponding time points(P<0.05/3=0.016 7). Compared to the control group, the levels of HMGB1, RIP1, and RIP3 increased in the APAP groups at all time points(P<0.05); Compared to the APAP groups, the levels of HMGB1, RIP1, and RIP3 decreased in the APAP+TAK-242 groups at the corresponding time points(P<0.05/3=0.016 7). Compared to the control group, the content of Fe2+, NF-κB and P53 was increased(P<0.05), but the levels of SLC7A11 and GPX4 decreased in the APAP groups at all time points(P<0.05); Compared to the APAP groups, the content of Fe2+, NF-κB and P53 were decreased(P<0.05/3=0.016 7), but the levels of SLC7A11 and GPX4 increased in the APAP+TAK-242 groups at the corresponding time points(P<0.05/3=0.016 7). Conclusion Inhibition of TLR4 can negatively regulate programmed necrosis by regulating the TLR4 / HMGB1 signaling pathway and can negatively regulate the inflammatory response and ferroptosis by regulating TLR4/NF-κB signaling pathway to alleviate APAP-induced liver injury.

Key words: Acetaminophen, Toll-like receptor 4, Programmed necrosis, Ferroptosis, Inflammation

中图分类号: 

  • R575
[1] Liao J, Lu Q, Li Z, et al. Acetaminophen-induced liver injury: molecular mechanism and treatments from natural products[J]. Front Pharmacol, 2023,14:1122632. doi: 10.3389/fphar.2023.1122632.
[2] Ramachandran A, Jaeschke H. Acetaminophen toxicity: novel insights into mechanisms and future perspectives[J]. Gene Expr, 2018, 18(1): 19-30.
[3] Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity[J]. Food Chem Toxicol, 2020, 138: 111240. doi: 10.1016/j.fct.2020.111240.
[4] Zhang P, Li LQ, Zhang D, et al. Over-expressed miR-27a-3p inhibits inflammatory response to spinal cord injury by decreasing TLR4[J]. Eur Rev Med Pharmacol Sci, 2018, 22(17): 5416-5423.
[5] Jovanovic SS, Martinovic V, Bogojevic D, et al. Modulation of diabetes-related liver injury by the HMGB1/TLR4 inflammatory pathway[J]. J Physiol Biochem, 2018, 74(2): 345-358.
[6] Li S, Liu R, Xia S, et al. Protective role of curcumin on aflatoxin B1-induced TLR4/RIPK pathway mediated-necroptosis and inflammation in chicken liver[J]. Ecotoxicol Environ Saf, 2022, 233: 113319. doi: 10.1016/j.ecoenv.2022.113319.
[7] Zhu K, Zhu X, Sun S, et al. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats[J]. Exp Neurol, 2021, 345: 113828. doi: 10.1016/j.expneurol.2021.113828.
[8] Satoh T, Akira S. Toll-like receptor signaling and its inducible proteins[J]. Microbiol Spectr, 2016,4(6):10.
[9] Chen SN, Tan Y, Xiao XC, et al. Deletion of TLR4 attenuates lipopolysaccharide-induced acute liver injury by inhibiting inflammation and apoptosis[J]. Acta Pharmacol Sin, 2021, 42(10): 1610-1619.
[10] Cao M, Chen F, Xie N, et al. c-Jun N-terminal kinases differentially regulate TNF- and TLRs-mediated necroptosis through their kinase-dependent and -independent activities[J]. Cell Death Dis, 2018,9(12):1140.
[11] Hong Y, Yu J, Su Y, et al. High-fat diet aggravates acute pancreatitis via TLR4-mediated necroptosis and inflammation in rats[J]. Oxid Med Cell Longev, 2020, 2020: 1-10. doi: 10.1155/2020/8172714.
[12] Deutsch M, Graffeo CS, Rokosh R, et al. Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury[J]. Cell Death Dis, 2015, 6(5): e1759. doi: 10.1038/cddis.2015.126.
[13] Chen J, Li X, Ge C, et al. The multifaceted role of ferroptosis in liver disease[J]. Cell Death Differ, 2022, 29(3): 467-480.
[14] Lei G, Zhang Y, Hong T, et al. Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity[J]. Oncogene, 2021, 40(20): 3533-3547.
[15] Chen D, Geng Y, Deng Z, et al. Inhibition of TLR4 alleviates heat stroke-induced cardiomyocyte injury by down-regulating inflammation and ferroptosis[J]. Molecules, 2023, 28(5): 2297.
[16] Matsunaga N, Tsuchimori N, Matsumoto T, et al. TAK-242(resatorvid), a small-molecule inhibitor of toll-like receptor(TLR)4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules[J]. Mol Pharmacol, 2011, 79(1): 34-41.
[17] Huang GJ, Deng JS, Huang SS, et al. Hepatoprotective effects of eburicoic acid and dehydroeburicoic acid from Antrodia camphorata in a mouse model of acute hepatic injury[J]. Food Chem, 2013, 141(3): 3020-3027.
[18] Chen Y, Fang ZM, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis, 2023, 14(3): 205.
[19] 李徽徽, 仇大鹏, 高琴, 等.选择性激动黑皮质素4型受体(MC4R)通过HMGB1/TLR4/NF-κB信号途径对抗大鼠脓毒症致急性肝损伤[J].细胞与分子免疫学杂志, 2016, 32(8): 1055-1059. LI Huihui, QIU Dapeng, GAO Qin, et al. Selectively activating melanocortin 4 receptor acts against rat sepsis-induced acute liver injury via HMGB1/TLR4/NF-kappaB signaling pathway[J]. Chinese Journal of cellular and Molecular Immunology, 2016, 32(8): 1055-1059.
[20] Ma C, Jiang Y, Zhang X, et al. Isoquercetin ameliorates myocardial infarction through anti-inflammation and anti-apoptosis factor and regulating TLR4-NF-kappaB signal pathway[J]. Mol Med Rep, 2018, 17(5): 6675-6680.
[21] 朱英, 江振洲, 张陆勇. 药物性肝损伤的肝细胞死亡方式及治疗药物研究进展[J]. 药物评价研究, 2021, 44(5): 1097-1104. ZHU Ying, JIANG Zhenzhou, ZHANG Luyong. Research advance of hepatocyte death and therapeutic drugs in drug-induced liver injury[J]. Drug Evaluation Research, 2021, 44(5): 1097-1104.
[22] Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation[J]. Nature, 2002, 418(6894): 191-195.
[23] Wang J, Li R, Peng Z, et al. HMGB1 participates in LPS-induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF-kappaB signaling pathways[J]. Int J Mol Med, 2020, 45(1): 61-80.
[24] Mcdonald KA, Huang H, Tohme S, et al. Toll-like receptor 4(TLR4)antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1(HMGB1)signaling[J]. Mol Med, 2015, 20(1): 639-648.
[25] Zhang YF, He W, Zhang C, et al. Role of receptor interacting protein(RIP)1 on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice[J]. Toxicol Lett, 2014, 225(3): 445-453.
[26] Zeng F, Nijiati S, Tang L, et al. Ferroptosis detection: from approaches to applications[J]. Angew Chem Int Ed Engl, 2023, 62(35): e202300379. doi: 10.1002/anie.202300379.
[27] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
[28] Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409-422.
[29] Feng R, Xiong Y, Lei Y, et al. Lysine-specific demethylase 1 aggravated oxidative stress and ferroptosis induced by renal ischemia and reperfusion injury through activation of TLR4/NOX4 pathway in mice[J]. J Cell Mol Med, 2022, 26(15): 4254-4267.
[1] 郝跃伟 刘雪平 赵婷婷 郑敏 王一兵. 环氧化酶2基因多态性与动脉粥样硬化缺血性脑卒中的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 95-98.
[2] 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72.
[3] 杨晓喆,赵妍,青卉,王向东,张罗. 大气细颗粒物通过TLR4/NF-κB通路诱导鼻黏膜上皮细胞炎症反应[J]. 山东大学学报 (医学版), 2023, 61(9): 47-55.
[4] 刘金波,刘凯文,向崇鑫,程雷. 西红花苷对椎间盘退变的保护作用[J]. 山东大学学报 (医学版), 2023, 61(9): 84-93.
[5] 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26.
[6] 步美玲,王金荣,冯梅,孙立锋. FOXM1在呼吸道病毒感染致哮喘小鼠急性发作中的机制[J]. 山东大学学报 (医学版), 2023, 61(6): 1-9.
[7] 赵元元,路军涛,吴小华. 人脐带间充质干细胞外泌体miR-100对多囊卵巢综合征患者颗粒细胞炎症的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 51-58.
[8] 杨元凤,熊高才,黎豫川,罗玉玲,张敬杰. 鹿苓安肾颗粒对慢性肾功能衰竭大鼠炎症反应及细胞凋亡的影响[J]. 山东大学学报 (医学版), 2023, 61(10): 9-16.
[9] 张凤,吴哲,徐俊,刘玉兰. 6例非酒精性脂肪性肝病小鼠肠道B细胞的变化[J]. 山东大学学报 (医学版), 2022, 60(9): 67-73.
[10] 姜卉,魏甜,李建平,王聪. 葛根素对索拉非尼心肌毒性的保护及作用机制[J]. 山东大学学报 (医学版), 2022, 60(8): 14-22.
[11] 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29.
[12] 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88.
[13] 刘岩,张曼,姜朝阳,卞姝,杜艾家,陈鹤. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J]. 山东大学学报 (医学版), 2022, 60(6): 1-9.
[14] 邬雨洁,张明泉,纪永利,赵璐,王越,陈沙沙. 寒痉汤及其拆方对寒凝证高血压大鼠血清炎症因子、血管内皮功能及纤维化的影响[J]. 山东大学学报 (医学版), 2022, 60(6): 10-18.
[15] 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!