您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (11): 40-53.doi: 10.6040/j.issn.1671-7554.0.2024.0162

• 心血管疾病诊疗专题 • 上一篇    

单细胞转录组学与机器学习综合分析揭示腹主动脉瘤潜在生物标志物

王玉涛1,2,孙岩3   

  1. 1.山东中医药大学第一临床医学院, 山东 济南 250355;2.济南市中医医院周围血管病科, 山东 济南 250012;3.山东第一医科大学附属省立医院血管外科, 山东 济南 250021
  • 发布日期:2024-11-25
  • 通讯作者: 孙岩. E-mail:sdxueguan@163.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(82104860);山东省中医药科技发展计划(2019-0559);济南市卫生健康委员会科技计划项目(2019-1-23);山东省医药卫生科技发展计划(2018WS478);济南市临床医学科技创新计划(202134013)

Comprehensive analysis of single-cell transcriptomics and machine learning reveals potential biomarkers for abdominal aortic aneurysm

WANG Yutao1,2, SUN Yan3   

  1. 1. The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China;;
    2. Department of Peripheral Vascular Disease, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan 250012, Shandong, China;;
    3. Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Published:2024-11-25

摘要: 目的 利用单细胞转录组测序(single-cell RNA sequencing, scRNA)数据分析、加权基因共表达网络分析(weighted gene co-expression network analysis, WGCNA)、机器学习算法和免疫浸润分析筛选腹主动脉瘤(abdominal aortic aneurysm, AAA)潜在的生物标志物。 方法 下载基因表达数据库中包含AAA和正常主动脉(normal aorta control, NAC)的scRNA测序数据,经数据质量控制、降维、差异分析、细胞类型注释和拟时序分析后,筛选AAA发生过程中最早分化的细胞类型,筛选差异表达基因(differential expressed genes, DEGs),进行高维WGCNA(high dimensional WGCNA, hdWGCNA),识别与AAA相关的基因模块,并进行富集分析;下载包含AAA和NAC的常规转录组测序数据,进行差异分析、WGCNA,将scRNA样本DEGs、常规转录组DEGs和WGCNA结果进行整合,筛选与AAA病变相关的基因,并进行基因本体(gene ontology, GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)信号通路富集分析。利用最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)、支持向量机递归特征消除(support vector machine recursive feature elimination, SVM-RFE)和随机森林(random forest, RF)等机器学习方法筛选AAA的潜在生物标志物,并进行免疫浸润分析。 结果 scRNA数据分析结果显示,内皮细胞是AAA发生过程中最早分化的细胞类型,共获得853个scRNA DEGs;hdWGCNA识别出与AAA相关的2个基因模块,显著富集于辅助性T细胞17细胞分化、辅助性T细胞1和2细胞分化等信号通路。常规转录组分析共获得162个DEGs;整合后获得17个AAA相关基因,显著富集于趋化因子、辅助性T细胞17细胞分化、辅助性T细胞1和2细胞分化等信号通路。机器学习算法识别出AAA的潜在生物标志物生态病毒整合位点 2B(ecotropic viral integration site 2B, EVI2B)。EVI2B在AAA样本中的表达量高于NAC样本。免疫浸润结果显示,AAA样本中幼稚B细胞、浆细胞、活化树突细胞和中性粒细胞比例高于NAC样本。EVI2B表达量与M2巨噬细胞、M1巨噬细胞、CD8 T细胞、浆细胞、辅助滤泡T细胞、M0巨噬细胞和中性粒细胞呈正相关;与静息树突细胞呈负相关。 结论 AAA发病涉及多种免疫细胞和信号通路,EVI2B在AAA样本中表达显著增高,与多种免疫细胞具有相关性,可能成为AAA治疗的新靶点。

关键词: 腹主动脉瘤, 加权基因共表达网络分析, 机器学习, 生物标志物, 免疫浸润

Abstract: Objective To screen for potential biomarkers of abdominal aortic aneurysm(AAA)using single-cell RNA(scRNA)data analysis, weighted gene co-expression network analysis(WGCNA), machine learning, and immune infiltration analysis. Methods The scRNA sequencing data containing AAA and normal aorta control(NAC)in the gene expression database were downloaded and processed by data quality control, dimensionality reduction, differential analysis, and cell type annotation. Chronological analysis was proposed to screen for the earliest differentiated cell types during AAA genesis, and to screen for differentially expressed genes(DEGs). High dimensional WGCNA(hdWGCNA)was performed to identify AAA-related gene modules, and enrichment analysis was conducted. Conventional transcriptome sequencing data containing AAA and NAC was downloaded for differential analysis and WGCNA. DEGs of scRNA samples, DEGs of conventional transcriptomes and WGCNA results were integrated to screen genes associated with AAA lesions. Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)signaling pathway enrichment analysis were carried out. The potential biomarkers of AAA were screened using the least absolute shrinkage and selection operator(LASSO), support vector machine recursive feature elimination(SVM-RFE), and random forest(RF)machine learning methods. The immune infiltration analysis was performed. Results The results of scRNA data analysis showed that endothelial cell was the earliest cell type to differentiate during AAA development, and a total of 853 scRNA DEGs were obtained. hdWGCNA identified 2 gene modules associated with AAA, which were significantly enriched in the signaling pathways of T helper 17 cell differentiation, and T helper 1 and 2 cell differentiation. Conventional transcriptome analysis yielded a total of 162 DEGs. Integration yielded 17 AAA-associated genes, which significantly enriched in signaling pathways such as chemokines, T helper 17 cell differentiation, and T helper 1 and 2 cell differentiation. The machine learning algorithm identified a potential biomarker for AAA, ecotropic viral integration site 2B(EVI2B). The expression of EVI2B was higher in AAA samples than in NAC samples. The immune infiltration results showed that the proportions of naive B cells, plasma cells, activated dendritic cells and neutrophils were higher in AAA samples than in NAC samples. EVI2B was positively correlated with M2 macrophages, M1 macrophages, CD8 T cells, plasma cells, helper follicular T cells, M0 macrophages, and neutrophils; and it was negatively correlated with resting dendritic cells. Conclusion AAA pathogenesis involves a variety of immune cells and signaling pathways, and EVI2B expression is significantly increased in AAA samples, correlating with a variety of immune cells, which may be a new target for AAA treatment.

Key words: Abdominal aortic aneurysm, Weighted gene co-expression network analysis, Machine learning, Biomarkers, Immune infiltration

中图分类号: 

  • R654.4
[1] 张韬, 郭伟. 腹主动脉瘤诊断和治疗中国专家共识(2022版)[J]. 中国实用外科杂志, 2022, 42(4): 380-387.
[2] Yuan Z, Lu Y, Wei J, et al. Abdominal aortic aneurysm: roles of inflammatory cells[J]. Front Immunol, 2020, 11: 609161. doi:10.3389/fimmu.2020.609161.
[3] 王颖, 顾慧, 于鑫鑫, 等. 71例腹主动脉瘤的基线CT特征与病变进展的相关性[J]. 山东大学学报(医学版), 2022, 60(10): 62-67. WANG Ying, GU Hui, YU Xinxin, et al. Correlation between baseline CT features and progression of abdominal aortic aneurysm in 71 cases[J]. Journal of Shandong University(Health Sciences), 2022, 60(10): 62-67.
[4] Kindon AJ, McCombie AM, Frampton C, et al. Early relative growth rate of abdominal aortic aneurysms and future risk of rupture or repair[J]. Eur J Vasc Endovasc Surg, 2023, 66(6): 797-803.
[5] Lancaster EM, Gologorsky R, Hull MM, et al. The natural history of large abdominal aortic aneurysms in patients without timely repair[J]. J Vasc Surg, 2022, 75(1): 109-117.
[6] Leone N, Broda MA, Eiberg JP, et al. Systematic review and meta-analysis of the incidence of rupture, repair, and death of small and large abdominal aortic aneurysms under surveillance[J]. J Clin Med, 2023, 12(21): 6837.
[7] Roychowdhury T, Klarin D, Levin MG, et al. Genome-wide association meta-analysis identifies risk loci for abdominal aortic aneurysm and highlights PCSK9 as a therapeutic target[J]. Nat Genet, 2023, 55(11): 1831-1842.
[8] Zhang S, Gu H, Chang N, et al. Assessing abdominal aortic aneurysm progression by using perivascular adipose tissue attenuation on computed tomography angiography[J]. Korean J Radiol, 2023, 24(10): 974-982.
[9] Hofmann A, Khorzom Y, Klimova A, et al. Associations of tissue and soluble LOX-1 with human abdominal aortic aneurysm[J]. J Am Heart Assoc, 2023,12(14):e027537. doi: 10.1161/JAHA.122.027537.
[10] Davis FM, Tsoi LC, Melvin WJ, et al. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms[J]. J Exp Med, 2021, 218(6): e20201839. doi:10.1084/jem.20201839.
[11] Pahl MC, Erdman R, Kuivaniemi H, et al. Transcriptional(ChIP-chip)analysis of ELF1, ETS2, RUNX1 and STAT5 in human abdominal aortic aneurysm[J]. Int J Mol Sci, 2015, 16(5): 11229-11258.
[12] Biros E, Moran CS, Rush CM, et al. Differential gene expression in the proximal neck of human abdominal aortic aneurysm[J]. Atherosclerosis, 2014, 233(1): 211-218.
[13] Biros E, Gäbel G, Moran CS, et al. Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease[J]. Oncotarget, 2015,6(15):12984-12996.
[14] Zhang KJ, Yue JN, Yin L, et al. Comprehensive bioinformatics analysis revealed potential key genes and pathways underlying abdominal aortic aneurysm[J]. Comput Struct Biotechnol J, 2023, 21: 5423-5433. doi:10.1016/j.csbj.2023.10.052.
[15] Davis FM, Tsoi LC, Melvin WJ, et al. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms[J]. J Exp Med, 2021, 218(6): e20201839. doi:10.1084/jem.20201839.
[16] Manenti A, Farinetti A, Manco G, et al. Intraluminal Thrombus and abdominal aortic aneurysm complications[J]. Ann Vasc Surg, 2022, 83: e11-e12.
[17] Zheng DD, Liu J, Piao HL, et al. ROS-triggered endothelial cell death mechanisms: focus on pyroptosis, parthanatos, and ferroptosis[J]. Front Immunol, 2022, 13: 1039241. doi:10.3389/fimmu.2022.1039241.
[18] DeRoo E, Stranz A, Yang H, et al. Endothelial dysfunction in the pathogenesis of abdominal aortic aneurysm[J]. Biomolecules. 2022,12(4): 509. doi: 10.3390/biom12040509.
[19] Spartalis E, Spartalis M, Athanasiou A, et al. Endothelium in aortic aneurysm disease: new insights[J]. Curr Med Chem, 2020, 27(7): 1081-1088.
[20] Zhao W, Yao MY, Zhang YY, et al. Endothelial cyclin I reduces vulnerability to angiotensin II-induced vascular remodeling and abdominal aortic aneurysm risk[J]. Microvasc Res, 2022, 142: 104348. doi:10.1016/j.mvr.2022.104348.
[21] Sharma AK, Lu GY, Jester A, et al. Experimental abdominal aortic aneurysm formation is mediated by IL-17 and attenuated by mesenchymal stem cell treatment[J]. Circulation, 2012, 126(Suppl 1): S38-S45.
[22] López-Sanz L, Bernal S, Jiménez-Castilla L, et al. The presence of activating IgG Fc receptors in macrophages aggravates the development of experimental abdominal aortic aneurysm[J]. Clin Investig Arterioscler, 2023, 35(4): 185-194.
[23] Lu L, Jin Y, Tong YH, et al. Myeloid-derived suppressor cells promote the formation of abdominal aortic aneurysms through the IL-3-ICOSL-ICOS axis[J]. BBA Adv, 2023, 4: 100103. doi:10.1016/j.bbadva.2023.100103.
[24] Zhu HL, Qu XQ, Zhang CS, et al. Interleukin-10 promotes proliferation of vascular smooth muscle cells by inhibiting inflammation in rabbit abdominal aortic aneurysm[J]. Int J Clin Exp Pathol, 2019, 12(4): 1260-1271.
[25] Wang H, Wei GD, Cheng S, et al. Circulatory CD4-positive T-lymphocyte imbalance mediated by homocysteine-induced AIM2 and NLRP1 inflammasome upregulation and activation is associated with human abdominal aortic aneurysm[J]. J Vasc Res, 2020, 57(5): 276-290.
[26] Zjablovskaja P, Kardosova M, Danek P, et al. EVI2B is a C/EBPα target gene required for granulocytic differentiation and functionality of hematopoietic progenitors[J]. Cell Death Differ, 2017, 24(4): 705-716.
[27] Dai ZL, Liu ZQ, Yang R, et al. EVI2B is a prognostic biomarker and is correlated with monocyte and macrophage infiltration in osteosarcoma based on an integrative analysis[J]. Biomolecules, 2023, 13(2): 327.
[28] Yap C, Mieremet A, de Vries CJM, et al. Six shades of vascular smooth muscle cells illuminated by KLF4(Krüppel-like factor 4)[J]. Arterioscler Thromb Vasc Biol, 2021, 41(11): 2693-2707.
[29] Gu JQ, Yang WW, Lin S, et al. Identification of co-expressed genes and immune infiltration features related to the progression of atherosclerosis[J]. J Appl Genet, 2024, 65(2): 331-339.
[30] Wierer M, Prestel M, Schiller HB, et al. Compartment-resolved proteomic analysis of mouse aorta during atherosclerotic plaque formation reveals osteoclast-specific protein expression[J]. Mol Cell Proteomics, 2018, 17(2): 321-334.
[31] Petsophonsakul P, Furmanik M, Forsythe R, et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation[J]. Arterioscler Thromb Vasc Biol, 2019, 39(7): 1351-1368.
[1] 卫任,郭伟. 腹主动脉瘤腔内治疗现状[J]. 山东大学学报 (医学版), 2024, 62(9): 13-18.
[2] 史潇兮,辛世杰. 腹主动脉瘤的开放手术[J]. 山东大学学报 (医学版), 2024, 62(9): 26-29.
[3] 霍正坤,孔祥骞,吴学君. 感染性主动脉瘤诊疗进展[J]. 山东大学学报 (医学版), 2024, 62(9): 42-48.
[4] 周永康,孙境,张帅,钱向阳. 胸腹主动脉瘤开放修复脊髓保护策略的研究进展[J]. 山东大学学报 (医学版), 2024, 62(9): 49-54.
[5] 范立彬,张鸿坤. 腹主动脉瘤腔内修复术后Ⅱ型内漏的预防及治疗进展[J]. 山东大学学报 (医学版), 2024, 62(9): 55-60.
[6] 牛帅,吴学君. 铁死亡在腹主动脉瘤中的研究进展[J]. 山东大学学报 (医学版), 2024, 62(9): 74-79.
[7] 孙境,张帅,齐红霞,李远,周永康,胡可鉴,钱向阳. 常温自身动脉转流内脏优先策略在胸腹主动脉置换手术中的脊髓保护作用[J]. 山东大学学报 (医学版), 2024, 62(9): 80-85.
[8] 王浙宇,许懿,赵昌波,杨硕菲,倪其泓,陈佳佺,王韦仑,李一男,郭相江,叶猛,张岚,薛冠华. 腹主动脉瘤腔内修复术后发生髂支闭塞的危险因素及处理对策[J]. 山东大学学报 (医学版), 2024, 62(9): 101-107.
[9] 王静,刘晓菲,曾荣,许长娟,张锦涛,董亮. 基于机器学习算法鉴定哮喘的坏死性凋亡相关生物标志物[J]. 山东大学学报 (医学版), 2024, 62(7): 21-32.
[10] 郭振江,王宁,赵光远,杜立强,崔朝勃,刘防震. 基于机器学习建立术前预测近端胃癌食管切缘阳性模型[J]. 山东大学学报 (医学版), 2024, 62(7): 78-83.
[11] 冯绪梅,宋相庆,季冠虹,赵小刚,肖兆华. 血浆外泌体miR-548k在食管鳞癌中的表达及诊断价值[J]. 山东大学学报 (医学版), 2024, 62(5): 79-88.
[12] 石硕川,曾荣,张锦涛,张东,潘云,刘晓菲,许长娟,王莹,董亮. 基于生物信息学探索支气管哮喘中的潜在差异免疫基因和免疫浸润特征[J]. 山东大学学报 (医学版), 2024, 62(5): 43-53.
[13] 申永春,文富强. 线粒体损伤相关分子模式作为慢性阻塞性肺疾病生物标志物的研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 16-20.
[14] 梁永媛,蔡培飞,郑桂喜. 基于多检验变量和机器学习算法的结肠癌诊断模型建立及价值评估[J]. 山东大学学报 (医学版), 2024, 62(2): 51-59.
[15] 瞿进,曾照祥,何孟伟,霍威学,张恒,陆烨,田文,冯睿. 胸腹主动脉夹层瘤和退行性胸腹主动脉瘤腔内治疗结果对比研究[J]. 山东大学学报 (医学版), 2024, 62(11): 14-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!