山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (11): 20-26.doi: 10.6040/j.issn.1671-7554.0.2023.0900
Andong GUO1,Sentai DING1,2,*()
摘要:
膀胱癌是临床常见的泌尿系统肿瘤, 以顺铂为主的化疗是不可手术和转移性肌层浸润性膀胱癌的一线治疗方案,而由于化疗耐药的产生,很大一部分患者会化疗失败,导致肿瘤复发和进展。肿瘤类器官模型近年来已成为研究发病转移机制和用药敏感性的热点,其中膀胱癌类器官的成功建立是膀胱癌临床转化研究的重大突破,类器官与原发组织具有高度的遗传和表型一致性,这种特性可以帮助我们更好地理解膀胱癌的基因组学改变、检测药物治疗敏感性以及耐药性等问题。本文旨在针对膀胱癌类器官作为临床前模型的构建流程、特征优势以及应用方向进行综述分析。
中图分类号:
1 |
王凯剑, 戴利和, 许传亮. 膀胱癌分子分型的研究进展[J]. 第二军医大学学报, 2018, 39 (1): 81- 85.
doi: 10.16781/j.0258-879x.2018.01.0081 |
WANG Kaijian , DAI Lihe , XU Chuanliang . Molecular typing of bladder cancer: an update[J]. Academic Journal of Second Military Medical University, 2018, 39 (1): 81- 85.
doi: 10.16781/j.0258-879x.2018.01.0081 |
|
2 |
Jubber I , Ong S , Bukavina L , et al. Epidemiology of bladder cancer in 2023: a systematic review of risk factors[J]. Eur Urol, 2023, 84 (2): 176- 190.
doi: 10.1016/j.eururo.2023.03.029 |
3 |
Witjes JA , Bruins HM , Cathomas R , et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines[J]. Eur Urol, 2021, 79 (1): 82- 104.
doi: 10.1016/j.eururo.2020.03.055 |
4 |
Compérat E , Amin MB , Cathomas R , et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments[J]. Lancet, 2022, 400 (10364): 1712- 1721.
doi: 10.1016/S0140-6736(22)01188-6 |
5 |
刘润泽, 张勇. 患者源性膀胱癌类器官模型的应用及研究进展[J]. 中华肿瘤防治杂志, 2023, 30 (15): 948- 952.
doi: 10.16073/j.cnki.cjcpt.2023.15.09 |
LIU Runze , ZHANG Yong . Application and research progress of patient-derived organoid model in bladder cancer[J]. Chinese Journal of Cancer Prevention and Treatment, 2023, 30 (15): 948- 952.
doi: 10.16073/j.cnki.cjcpt.2023.15.09 |
|
6 |
Clevers H . Modeling development and disease with organoids[J]. Cell, 2016, 165 (7): 1586- 1597.
doi: 10.1016/j.cell.2016.05.082 |
7 |
Huang L , Holtzinger A , Jagan I , et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell and patient-derived tumor organoids[J]. Nat Med, 2015, 21 (11): 1364- 1371.
doi: 10.1038/nm.3973 |
8 |
Homan KA , Gupta N , Kroll KT , et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro[J]. Nat Methods, 2019, 16 (3): 255- 262.
doi: 10.1038/s41592-019-0325-y |
9 |
Roelofs C , Hollande F , Redvers R , et al. Breast tumour organoids: promising models for the genomic and functional characterisation of breast cancer[J]. Biochem Soc Trans, 2019, 47 (1): 109- 117.
doi: 10.1042/BST20180375 |
10 |
Lhmussaar K , Kopper O , Korving J , et al. Assessing the origin of high-grade serous ovarian cancer using CRISPR-modification of mouse organoids[J]. Nat Commun, 2020, 11 (1): 2660.
doi: 10.1038/s41467-020-16432-0 |
11 |
Lancaster MA , Knoblich JA . Generation of cerebral organoids from human pluripotent stem cells[J]. Nat Protoc, 2014, 9 (10): 2329- 2340.
doi: 10.1038/nprot.2014.158 |
12 |
Barker N , Huch M , Kujala P , et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro[J]. Cell Stem Cell, 2010, 6 (1): 25- 36.
doi: 10.1016/j.stem.2009.11.013 |
13 | 孙晓宇, 张志宏, 张昌文. 膀胱癌类器官模型的研究进展[J]. 天津医科大学学报, 2023, 29 (5): 564- 567. |
14 | Zhao X , Jiang Y , Liu C , et al. Organoid technology and clinical applications in digestive system cancer[J]. Engineering, 2022, 9 (2): 123- 130. |
15 |
Medle B , Sj dahl G , Eriksson P , et al. Patient-derived bladder cancer organoid models in tumor biology and drug testing: a systematic review[J]. Cancers (Basel), 2022, 14 (9): 2062.
doi: 10.3390/cancers14092062 |
16 |
Bentivegna A , Conconi D , Panzeri E , et al. Biological heterogeneity of putative bladder cancer stem-like cell populations from human bladder transitional cell carcinoma samples[J]. Cancer Sci, 2010, 101 (2): 416- 424.
doi: 10.1111/j.1349-7006.2009.01414.x |
17 |
Kim E , Choi S , Kang B , et al. Creation of bladder assembloids mimicking tissue regeneration and cancer[J]. Nature, 2020, 588 (7839): 664- 669.
doi: 10.1038/s41586-020-3034-x |
18 |
Yu L , Li Z , Mei H , et al. Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro[J]. Clin Transl Immunology, 2021, 10 (2): e1248.
doi: 10.1002/cti2.1248 |
19 |
Walz S , Pollehne P , Geng R , et al. A protocol for organoids from the urine of bladder cancer patients[J]. Cells, 2023, 12 (17): 2188.
doi: 10.3390/cells12172188 |
20 |
Hofner T , Macher-Goeppinger S , Klein C , et al. Development and characteristics of preclinical experimental models for the research of rare neuroendocrine bladder cancer[J]. J Urol, 2013, 190 (6): 2263- 2270.
doi: 10.1016/j.juro.2013.06.053 |
21 |
Lee SH , Hu W , Matulay JT , et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer[J]. Cell, 2018, 173 (2): 515- 528.
doi: 10.1016/j.cell.2018.03.017 |
22 |
Shen L , Zhang J , Zheng Z , et al. PHGDH inhibits ferroptosis and promotes malignant progression by upregulating SLC7A11 in bladder cancer[J]. Int J Biol Sci, 2022, 18 (14): 5459- 5474.
doi: 10.7150/ijbs.74546 |
23 |
Wang M , Chen X , Tan P , et al. Acquired semi-squamatization during chemotherapy suggests differentiation as a therapeutic strategy for bladder cancer[J]. Cancer Cell, 2022, 40 (9): 1044- 1059.
doi: 10.1016/j.ccell.2022.08.010 |
24 |
Mullenders J , de Jongh E , Brousali A , et al. Mouse and human urothelial cancer organ-oids: a tool for bladder cancer research[J]. Proc Natl Acad Sci U S A, 2019, 116 (10): 4567- 4574.
doi: 10.1073/pnas.1803595116 |
25 |
Wang N , Chen RX , Deng MH , et al. M5C-dependent cross-regulation between nuclear reader ALYREF and writer NSUN2 promotes urothelial bladder cancer malignancy through facilitating RABL6/TK1 mRNAs splicing and stabilization[J]. Cell Death Dis, 2023, 14 (2): 139.
doi: 10.1038/s41419-023-05661-y |
26 |
Geng R , Harland N , Montes-Mojarro IA , et al. CD24: a marker for an extended expansion potential of urothelial cancer cell organoids in vitro[J]. Int J Mol Sci, 2022, 23 (10): 5453.
doi: 10.3390/ijms23105453 |
27 |
Xiao K , Peng S , Lu J , et al. UBE2S interacting with TRIM21 mediates the K11-linked ubiquitination of LPP to promote the lymphatic metastasis of bladder cancer[J]. Cell Death Dis, 2023, 14 (7): 408.
doi: 10.1038/s41419-023-05938-2 |
28 |
Vlaar JM , Borgman A , Kalkhoven E , et al. Recurrent exon-deleting activating mutations in AHR act as drivers of urinary tract cancer[J]. Sci Rep, 2022, 12 (1): 10081.
doi: 10.1038/s41598-022-14256-0 |
29 |
Kong J , Lee H , Kim D , et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients[J]. Nat Commun, 2020, 11 (1): 5485.
doi: 10.1038/s41467-020-19313-8 |
30 |
Burgués JP , Gómez L , Pontones JL , et al. A chemosensitivity test for superficial bladder cancer based on three-dimensional culture of tumour spheroids[J]. Eur Urol, 2007, 51 (4): 962- 970.
doi: 10.1016/j.eururo.2006.10.034 |
31 |
Neal JT , Li X , Zhu J , et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175 (7): 1972- 1988.
doi: 10.1016/j.cell.2018.11.021 |
32 |
Elbadawy M , Sato Y , Mori T , et al. Anti-tumor effect of trametinib in bladder cancer organoid and the underlying mechanism[J]. Cancer Biol Ther, 2021, 22 (5-6): 357- 371.
doi: 10.1080/15384047.2021.1919004 |
33 |
Abugomaa A , Elbadawy M , Ishihara Y , et al. Anti-cancer activity of Chaga mushroom (Inonotus obliquus) against dog bladder cancer organoids[J]. Front Pharmacol, 2023, 14, 1159516.
doi: 10.3389/fphar.2023.1159516 |
34 |
Gelbrich N , Miebach L , Berner J , et al. Medical gas plasma augments bladder cancer cell toxicity in preclinical models and patient-derived tumor tissues[J]. J Adv Res, 2023, 47, 209- 223.
doi: 10.1016/j.jare.2022.07.012 |
35 |
Seiler R , Egger M , De Menna M , et al. Guidance of adjuvant instillation in intermediate-risk non-muscle invasive bladder cancer by drug screens in patient derived organoids: a single center, open-label, phase Ⅱ trial[J]. BMC Urol, 2023, 23 (1): 89.
doi: 10.1186/s12894-023-01262-1 |
36 |
Becker L , Fischer F , Fleck JL , et al. Data-driven identification of biomarkers for in situ monitoring of drug treatment in bladder cancer organoids[J]. Int J Mol Sci, 2022, 23 (13): 6956.
doi: 10.3390/ijms23136956 |
37 |
Gong Z , Huang L , Tang X , et al. Acoustic droplet printing tumor organoids for modeling bladder tumor immune microenvironment within a week[J]. Adv Healthc Mater, 2021, 10 (22): e2101312.
doi: 10.1002/adhm.202101312 |
38 |
Yoon WH , Lee HR , Kim S , et al. Use of inkjet-printed single cells to quantify intratumoral heterogeneity[J]. Biofabrication, 2020, 12 (3): 035030.
doi: 10.1088/1758-5090/ab9491 |
39 |
Gheibi P , Zeng S , Son KJ , et al. Microchamber cultures of bladder cancer: a platform for characterizing drug responsiveness and resistance in PDX and primary cancer cells[J]. Sci Rep, 2017, 7 (1): 12277.
doi: 10.1038/s41598-017-12543-9 |
40 |
Lee LM , Seftor EA , Bonde G , et al. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation[J]. Dev Dyn, 2005, 233 (4): 1560- 1570.
doi: 10.1002/dvdy.20471 |
41 |
Marques IJ , Weiss FU , Vlecken DH , et al. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model[J]. BMC Cancer, 2009, 9, 128.
doi: 10.1186/1471-2407-9-128 |
42 |
Ali Z , Vildevall M , Rodriguez GV , et al. Zebrafish patient-derived xenograft models predict lymph node involvement and treatment outcome in non-small cell lung cancer[J]. J Exp Clin Cancer Res, 2022, 41 (1): 58.
doi: 10.1186/s13046-022-02280-x |
43 |
Wu ZS , Wu S . The era of personalized treatments: updates on immunotherapy within urothelial of bladder cancer[J]. Curr Urol, 2022, 16 (3): 117- 120.
doi: 10.1097/CU9.0000000000000133 |
[1] | 马燕燕,龚瑶琴. 人脑类器官在神经发育疾病研究中的应用[J]. 山东大学学报 (医学版), 2021, 59(9): 22-29. |
[2] | 王琳琳,孙玉萍. 从临床医生角度,看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报 (医学版), 2021, 59(9): 89-96. |
[3] | 王传新. 肿瘤液体活检[J]. 山东大学学报 (医学版), 2021, 59(9): 64-71. |
[4] | 米琦,史爽,李娟,李培龙,杜鲁涛,王传新. 膀胱癌circRNAs介导的ceRNA网络及预后评估模型的构建[J]. 山东大学学报 (医学版), 2021, 59(6): 94-102. |
[5] | 张照鹏,邢乃栋,张翔,阎磊,徐忠华. 160例腹腔镜根治性膀胱切除术后淋巴漏的影响因素分析[J]. 山东大学学报 (医学版), 2020, 58(1): 67-72. |
[6] | 王健,李健,王勇,朱耀丰. 黄芩素通过抑制PI3K/AKT/mTOR通路诱导膀胱癌细胞凋亡[J]. 山东大学学报 (医学版), 2019, 57(9): 74-82. |
[7] | 刘杰, 崔伟,车梓,崔志强,王策正,王彤,李明,刘玲,杨全成,孙彬,高佃军,聂清生. 经尿道膀胱肿瘤电切术治疗肌层浸润性膀胱癌的临床疗效[J]. 山东大学学报 (医学版), 2018, 56(7): 81-85. |
[8] | 蒿魁元,赵圣,张宇,崔迪,荆翌峰,夏术阶,韩邦旻. 雄激素阻断对膀胱癌UM-UC-3细胞自噬与凋亡的影响[J]. 山东大学学报 (医学版), 2018, 56(3): 41-47. |
[9] | 王红阳. 精准医疗时代的肿瘤生物标志物发展[J]. 山东大学学报 (医学版), 2018, 56(10): 1-2. |
[10] | 刘益民,杜鲁涛,王丽丽,蒋秀梅,李娟,曲爱林,王海燕,郑桂喜,张欣,杨咏梅,王传新. 膀胱癌患者血清microRNA检测中内参基因的筛选及验证[J]. 山东大学学报(医学版), 2014, 52(5): 86-91. |
[11] | 武广平,厉波,曹勇 . 钬激光联合吡柔比星膀胱灌注治疗非肌层浸润性膀胱癌的临床分析[J]. 山东大学学报(医学版), 2010, 48(12): 97-99. |
|