山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (6): 14-21.doi: 10.6040/j.issn.1671-7554.0.2020.111
• • 上一篇
孙盼盼1,赵旭2,林小雯1,傅志俭1
SUN Panpan1, ZHAO Xu2, LIN Xiaowen1, FU Zhijian1
摘要: 目的 探讨医用臭氧对大鼠骨性关节炎软骨细胞中过氧化物酶体增殖物激活受体γ(PPARγ)及自噬相关蛋白表达的影响,及PPARγ在臭氧诱导的软骨细胞自噬中的作用。 方法 选取出生3 d以内的Wistar大鼠10只,获取四肢关节软骨进行原代软骨细胞的分离培养,并通过甲苯胺蓝染色及Ⅱ型胶原蛋白免疫荧光进行软骨细胞的鉴定。通过10 ng/mL 白介素-1β(IL-1β)刺激24 h构建骨关节炎软骨细胞模型。造模后采用不同浓度臭氧处理30 min,采用CCK-8法检测不同浓度臭氧对软骨细胞活力的影响,选出最佳臭氧浓度。造模后加入PPARγ特异性抑制剂GW9662处理12 h,再给予30 μg/mL臭氧处理。将原代软骨细胞随机分为对照组、模型组、模型臭氧组、正常臭氧组、模型臭氧+抑制剂组及模型抑制剂组。采用Western blotting法检测PPARγ蛋白及自噬相关蛋白LC3Ⅱ、P62及Beclin-1的表达。采用免疫荧光技术检测软骨细胞的自噬相关蛋白LC3B及P62的表达。 结果 经甲苯胺蓝染色及Ⅱ型胶原蛋白免疫荧光鉴定,分离培养的细胞为软骨细胞。不同浓度臭氧处理后,30 μg/mL臭氧处理后骨性关节炎软骨细胞的活力得到改善(P<0.05),50、70 μg/mL臭氧明显抑制骨性关节炎软骨细胞的活力(P<0.05)。30 μg/mL臭氧提高了骨性关节炎软骨细胞中PPARγ及自噬相关蛋白LC3Ⅱ及Beclin-1的表达水平,抑制了P62蛋白的表达(P<0.05)。PPARγ特异性抑制剂GW9662(20 mmol/mL)抑制臭氧对骨性关节炎软骨细胞自噬相关蛋白LC3Ⅱ、Beclin-1上调作用,并可逆转臭氧对P62的抑制作用。 结论 30 μg/mL 医用臭氧可以促进骨性关节炎软骨细胞自噬,PPARγ激活在臭氧诱导骨性关节炎软骨细胞的自噬中起到促进作用。
中图分类号:
[1] Shane Anderson A, Loeser RF. Why is osteoarthritis an age-related disease? [J]. Best Pract Res Clin Rheumatol, 2010, 24(1):15-26. [2] Vinatier C, Dominguez E, Guicheux J, et al. Role of the inflammation-autophagy-senescence integrative network in osteoarthritis [J]. Front Physiol, 2018, 9:706-730. doi:10.3389/fphys.2018.00706. [3] Ma F, Li G, Yu Y, et al. MiR-33b-3p promotes chondrocyte proliferation and inhibits chondrocyte apoptosis and cartilage ECM degradation by targeting DNMT3A in osteoarthritis[J]. Biochem Biophys Res Commun, 2019, 519(2):430-437. [4] Luo P, Gao F, Niu D, et al. The role of autophagy in chondrocyte metabolism and osteoarthritis: a comprehensive research review[J]. Biomed Res Int, 2019,8:602-608. doi.org/10.1155/2019/5171602. [5] Zhong J, Gong W, Chen J, et al. Micheliolide alleviates hepatic steatosis in db/db mice by inhibiting inflammation and promoting autophagy via PPAR-gamma-mediated NF-kB and AMPK/mTOR signaling[J]. Int Immunopharmacol, 2018, 59(4):197-208. [6] Chen W, Xi X, Zhang S, et al. Pioglitazone protects against renal ischemia-reperfusion injury via the amp-activated protein kinase-regulated autophagy pathway[J].Front Pharmacol, 2018, 9(12):851-862. [7] Vasheghani F, Zhang Y, Li YH, et al. PPARgamma deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage[J]. Ann Rheum Dis, 2015, 74(3):569-578. [8] Wang ZJ, Zhang HB, Chen C, et al. Effect of PPARG on AGEs-induced AKT/MTOR signaling-associated human chondrocytes autophagy[J]. Cell Biol Int, 2018, 42(7):841-848. [9] Bhatia A, Munk P, Lee D, et al. Percutaneous ozone treatment for herniated lumbar discs: 1-year follow-up of a multicenter pilot study of a handheld disposable ozone-generating device[J]. J Vasc Interv Radiol, 2019, 30(5):752-760. [10] Zhao X, Li Y, Lin X, et al. Ozone induces autophagy in rat chondrocytes stimulated with IL-1beta through the AMPK/mTOR signaling pathway[J]. J Pain Res, 2018, 11:3003-3017. doi:10.2147/jpr.s183594. [11] Lotz MK,Caramés B. Autophagy and cartilage homeostasis mechanisms in joint health aging and OA[J].Nat RevRheumatol, 2011, 7(10):579-587. [12] Houard X, Goldring MB, Berenbaum F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis[J]. Curr Rheumatol Rep, 2013, 15(11):375-393. doi:10.1007/s11926-013-0375-6. [13] Manoto SL, Maepa MJ, Motaung SK. Medical ozone therapy as a potential treatment modality for regeneration of damaged articular cartilage in osteoarthritis[J]. Saudi J Biol Sci, 2018, 25(4): 672-679. [14] 姜鹏, 李芸, 王珺楠, 等. 臭氧对骨性关节炎大鼠关节软骨Wnt/β-catenin 信号通路的影响[J]. 中华麻醉学杂志, 2016, 36(3):346-349. JIANG Peng, LI Yun, WANG Junnan, et al. Effect of ozone on Wnt/β-catenin signaling pathway in articular cartilage of rats with osteoarthritis[J]. Chin J Anesthesiol, 2016, 36(3):346-349. [15] 于彦忠, 高俊霞. 不同浓度臭氧和玻璃酸钠关节腔内注射治疗膝关节骨关节炎[J]. 临床合理用药杂志,2015,8(20):65-66. [16] Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor[J]. Cell, 1994, 79(7):1147-1156. [17] Chawla A, Schwarz EJ, Dimaculangan DD, et al. Peroxisome proliferator-activated receptor(PPAR)gamma: adipose-predominant expression and induction early in adipocyte differentiation[J]. Endocrinology, 1994, 135(2):798-800. [18] Li Z, Jia Y, Feng Y, et al. Methane-rich saline protects against sepsis-induced liver damage by regulating the PPAR-gamma/NF-kappaB signaling pathway[J]. Shock, 2019, 52(6): 163-172. [19] Wang JS, Xiao WW, Zhong YS, et al. Galectin-3 deficiency protects lipopolysaccharide-induced chondrocytes injury via regulation of TLR4 and PPAR-gamma-mediated NF-kappaB signaling pathway[J]. J Cell Biochem, 2019, 120(6):10195-10204. [20] Qu Y, Zhou L, Wang C. MangiferiniInhibits IL-1beta-induced inflammatory response by activating PPAR-gamma in human osteoarthritis chondrocytes[J]. Inflammation, 2017, 40(1):52-57. [21] Wang ZJ, Zhang HB, Chen C, et al. Effect of PPARG on AGEs-induced AKT/MTOR signaling-associated human chondrocytes autophagy[J]. Cell Biol Int, 2018, 42(7):841-848. [22] Dell'Accio F, Sherwood J. PPARgamma/mTOR signalling: striking the right balance in cartilage homeostasis[J]. Ann Rheum Dis, 2015, 74(3):477-479. [23] Caramés B, Taniguchi N, Otsuki S, et al. Autophagy is a protective mechanism in normal cartilage and its aging-related loss is linked with cell death and osteoarthritis[J]. Arthritis Rheum, 2010, 62(3): 791-801. [24] Meckes JK, Carames B, Olmer M, et al. Compromised autophagy precedes meniscus degeneration and cartilage damage in mice[J]. Osteoarthritis Cartilage, 2017, 25(11):1880-1889. [25] Hill SM, Wrobel L, Rubinsztein DC. Post-translational modifications of Beclin 1 provide multiple strategies for autophagy regulation[J]. Cell Death Differ, 2019, 26(4):617-629. |
[1] | 徐兵,李勇,刘明,刘永辉. 沉默PRRX1基因表达可增强前列腺癌耐药细胞株PC-3/DTX对多西他赛的敏感性[J]. 山东大学学报 (医学版), 2021, 59(6): 103-110. |
[2] | 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27. |
[3] | 张小红,周云,杜秋莹,任慧欣,王超群. Atg7-siRNA通过调节精氨酸循环干扰食管癌ECA109细胞放疗敏感性[J]. 山东大学学报 (医学版), 2021, 59(4): 28-34. |
[4] | 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31. |
[5] | 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1-6. |
[6] | 陈虹瑜,曲竹丽,孙琪,赵华强,马川. IL-1β介导的ERK通路对大鼠髁突软骨细胞外基质的作用[J]. 山东大学学报 (医学版), 2019, 57(5): 80-86. |
[7] | 孙红林,韩波,王静,高聆,朱梅,姜殿东,吕建利. CD40siRNA调控c-Jun氨基末端激酶对自身免疫性心肌炎大鼠心肌细胞自噬的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 9-14. |
[8] | 温雪彬,傅志俭. 内质网应激在医用臭氧导致的大鼠脊髓神经毒性机制中的作用[J]. 山东大学学报 (医学版), 2019, 57(3): 7-12. |
[9] | 熊超,刘力,冯建国,魏继承. 七氟醚预处理对H9C2心肌细胞缺氧/复氧后转录沉默信息调节器3的表达及乙酰化水平的影响[J]. 山东大学学报 (医学版), 2019, 57(3): 25-30. |
[10] | 关红卫,李娟,孙锐,刘婕,李长忠. 乌苯美司对卵巢癌A2780细胞的生物学影响[J]. 山东大学学报 (医学版), 2019, 57(12): 46-51. |
[11] | 王波,薛江,刘爱虹,翟蕊蕊,王一彪. 雷帕霉素调控巨噬细胞表型改善肺动脉高压[J]. 山东大学学报 (医学版), 2018, 56(4): 51-57. |
[12] | 蒿魁元,赵圣,张宇,崔迪,荆翌峰,夏术阶,韩邦旻. 雄激素阻断对膀胱癌UM-UC-3细胞自噬与凋亡的影响[J]. 山东大学学报 (医学版), 2018, 56(3): 41-47. |
[13] | 曹若明,崔亮亮,姜超,景一鸣,周林,张琳,刘守钦. 济南市大气污染物O3与居民呼吸系统疾病死亡风险的时间序列分析[J]. 山东大学学报 (医学版), 2018, 56(11): 91-97. |
[14] | 赵姗姗,李晓梅,梁婷,张超,宋静,侯桂华. 自噬对125I-anti-TLR5同种移植排斥靶向显像的影响[J]. 山东大学学报(医学版), 2017, 55(9): 46-52. |
[15] | 殷雷,殷睿,李文佳,刘帅,吕家驹. CYLD抑制自噬提高膀胱癌细胞吉西他滨化疗敏感性[J]. 山东大学学报(医学版), 2017, 55(8): 1-6. |
|