您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (6): 98-103.doi: 10.6040/j.issn.1671-7554.0.2017.359

• • 上一篇    下一篇

健康管理人群慢性肾脏病风险预测模型

周苗1,2,夏同耀3,孙爱玲4,李明5,申振伟1,2,卞伟玮1,2,蒋正1,2,康凤玲1,2,柳晓涓1,2,薛付忠1,2,刘静1,2   

  1. 1.山东大学公共卫生学院生物统计学系, 山东 济南 250012;2.山东大学齐鲁生物医学大数据研究中心, 山东 济南 250012;3.北大医疗淄博医院, 山东 淄博 255069;4.北大医疗淄博医院社会工作部, 山东 淄博 255069;5.北大医疗淄博医院体检中心, 山东 淄博 255069
  • 收稿日期:2017-04-26 出版日期:2017-06-10 发布日期:2017-06-10
  • 通讯作者: 夏同耀. E-mail:xiatongyao@126.com E-mail:xiatongyao@126.com
  • 基金资助:
    国家自然科学基金(81273177)

Risk prediction model of chronic kidney disease in health management population

ZHOU Miao1,2, XIA Tongyao3, SUN Ailing4, LI Ming5, SHEN Zhenwei1,2, BIAN Weiwei1,2, JIANG Zheng1,2, KANG Fengling1,2, LIU Xiaojuan1,2, XUE Fuzhong1,2, LIU Jing1,2   

  1. 1. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Cheeloo Research Center for Biomedical Big Data, Shandong University, Jinan 250012, Shandong, China;
    3. PKUCare Zibo Hospital, Zibo 255069, Shandong, China;
    4. Social Work Department, PKUCare Zibo Hospital, Zibo 255069, Shandong, China;
    5. Health Examination Center, PKUCare Zibo Hospital, Zibo 255069, Shandong, China
  • Received:2017-04-26 Online:2017-06-10 Published:2017-06-10

摘要: 目的 构建健康管理人群慢性肾脏病(CKD)发病风险预测模型。 方法 从山东多中心健康管理纵向观察队列中选取年龄20岁以上、至少有两次纵向观察结果、初次观察结果未患CKD的健康管理对象,共17 654人,随访观察结局为CKD。应用Cox比例风险回归模型建立风险预测模型,以受试者工作特征曲线下面积(AUC)评价模型的拟合效果,应用十折交叉验证法验证模型的稳定性。 结果 观察期间共有770例新发CKD病例,发病密度为17.69/1 000人年。最终纳入模型的预测因子有年龄、性别、高血压、糖尿病、血肌酐、血尿素氮、血尿酸、嗜碱性粒细胞百分比。模型AUC为0.685(95%CI:0.678~0.692),且稳定性较好。 结论 建立的CKD风险预测模型在健康管理人群中有较好的预测能力。

关键词: 风险预测模型, 慢性肾脏病, 健康管理, 队列

Abstract: Objective To establish a risk prediction model of chronic kidney disease(CKD). Methods The data were obtained from Shandong Multi-center Longitudinal Cohort for Health Management. A total of 17 654 subjects with age of 20 years or older were included who had no CKD at baseline and accepted health examination at least twice during the study period. The follow-up outcome was CKD. Cox proportional hazards regression was applied to establish the model and the predictive performance of the model was evaluated by AUC. Ten-fold cross validation was used to verify the stability of the model. Results A total of 770 cases were observed during the follow-up. The incidence density of CKD was 17.69 per thousand person-years. The predictive factors in the final model included age, sex, hypertension, diabetes, creatinine, blood urea nitrogen, uric acid and basophils percentage. The AUC of the model was 0.685(95%CI: 0.678-0.692). Conclusion We have constructed a risk model that could be useful for identifying individuals at high risk of CKD in health management population.

Key words: Chronic kidney disease, Risk prediction model, Health management, Cohort

中图分类号: 

  • R692
[1] Schoolwerth AC, Engelgau MM, Hostetter TH, et al. Chronic kidney disease: a public health problem that needs a public health action plan[J]. Prev Chronic Dis, 2006, 3(2): A57.
[2] 唐盛, 龚智峰, 彭小梅, 等. 广西壮族成年人群慢性肾脏病流行情况及危险因素调查研究[J]. 中国全科医学, 2012,15(27): 3157-3159. TANG Sheng, GONG Zhifeng, PENG Xiaomei, et al. Investigation on prevalence of chronic kidney in Guangxi Zhuang Nationality and its risk factors[J]. Chinese General Practice, 2012, 15(27): 3157-3159.
[3] 李秀梅. 健康体检者慢性肾脏病患病率及危险因素探讨[J]. 中国卫生标准管理, 2015, 6(20): 4-5. LI Xiumei. Prevalence and risk factors of chronic kidney disease in healthy volunteers[J]. China Health Standard Management, 2015, 6(20): 4-5.
[4] 陈茂杰, 汪秀英, 卓朗. 健康体检者慢性肾脏病患病率及危险因素研究[J]. 徐州医学院学报, 2010,30(11): 730-732.
[5] 李军, 李慧. 廊坊市农村成年人群慢性肾脏病患病率及相关危险因素调查分析[J]. 中国血液净化, 2016,15(4): 247-250. LI Jun, LI Hui. A survey of the prevalence of chronic kidney disease and its related risk factors in adults from rural area of Langfang[J]. Chinese Journal of Blood Purification, 2016,15(4): 247-250.
[6] 刘建林, 吕心瑞, 王慧超, 等. 杞县成人体检人群慢性肾脏病患病率及危险因素调查[J]. 中国当代医药, 2015, 22(23): 147-149. LIU Jianlin, LÜ Xinrui, WANG Huichao, et al. Investigation of morbidity rate and risk factor of chronic kidney disease in adult check-up crowd of Qi County[J]. China Modern Medicine, 2015, 22(23): 147-149.
[7] 谢伟基, 张夏兰, 廖翼曼, 等. 汕头地区在职人员的慢性肾脏病发病率调查[J]. 中国中西医结合肾病杂志, 2014, 15(10): 880-886. XIE Weiji, ZHANG Xialan, LIAO Yiman, et al. The epidemiological study of chronic kidney disease in occupational populations in Shantou[J]. Chinese Journal of Integrated Traditional and Western Nephrology, 2014, 15(10): 880-886.
[8] 李道婷, 陈明道, 蔡鸿鹏, 等. 社区体检成人慢性肾脏病患病率及相关因素调查[J]. 浙江预防医学, 2013,25(8): 23-25, 32. LI Daoting, CHEN Mingdao, CAI Hongpeng, et al. A survey on prevalence of chronic kidney disease and its related factors among adults from physical examination in community[J]. Zhejiang Journal of Preventive Medicine, 2013, 25(8): 23-25, 32.
[9] 范文娟, 王淑霞, 米娜娃儿·玉努斯, 等. 新疆地区成年体检人群中慢性肾脏病患病率及相关危险因素调查[J]. 中华肾脏病杂志, 2011,27(6): 400-405. FAN Wenjuan, WANG Shuxia, MINAWAER Yunusi, et al. Prevalence and risk factors of chronic kidney disease in the adult population receiving healthy examination from Xinjiang[J]. Chinese Journal of Nephrology, 2011, 27(6): 400-405.
[10] Yuan J, Zou X, Han S, et al. Prevalence and risk factors for cardiovascular disease among chronic kidney disease patients: results from the Chinese cohort study of chronic kidney disease(C-STRIDE)[J]. BMC Nephrology, 2017, 18(1): 23. doi: 10.1186/s12882-017-0441-9.
[11] Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis[J]. The Lancet, 2010, 375(9731): 2073-2081.
[12] Ahmadi S, Zahmatkesh G, Ahmadi E, et al. Association of body mass index with clinical outcomes in non-dialysis-dependent chronic kidney disease: a systematic review and meta-analysis[J]. Cardiorenal Med, 2015, 6(1): 37-49.
[13] De Nicola L, Provenzano M, Chiodini P, et al. Epidemiology of low-proteinuric chronic kidney disease in renal clinics[J]. PLoS One, 2017, 12(2): e172241. doi: 10.1371/journal.pone.0172241. eCollection 2017.
[14] Ghonemy TA, Farag SE, Soliman SA, et al. Epidemiology and risk factors of chronic kidney disease in the El-Sharkia Governorate, Egypt[J]. Saudi J Kidney Dis Transpl, 2016, 27(1): 111-117.
[15] Chien KL, Lin HJ, Lee BC, et al. A prediction model for the risk of incident chronic kidney disease[J]. Am J Med, 2010, 123(9): 836-846.
[16] Weiner DE, Tighiouart H, Elsayed EF, et al. The Framingham predictive instrument in chronic kidney disease[J]. J Am Coll Cardiol, 2007, 50(3): 217-224.
[17] Bang H, Vupputuri S, Shoham DA, et al. Screening for occult renal disease(SCORED): a simple prediction model for chronic kidney disease[J]. Arch Intern Med, 2007, 167(4): 374-381.
[18] Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate[J]. Ann Intern Med, 2009, 150(9): 604-612.
[19] Kidney Disease: Improving Global Outcomes(KDIGO)CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease[J]. Kidney Int Suppl, 2013, 3(1): 1-150.
[20] 中国高血压防治指南修订委员会. 中国高血压防治指南2010[J]. 中华心血管病杂志, 2011,39(7): 579-616. Writing Group of 2010 Chinese Guidelines for the Management of Hypertension. 2010 Chinese guidelines for the management of hypertension[J]. Chin J Cardiol, 2011, 39(7): 579-616.
[21] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2013年版)[J]. 中华糖尿病杂志, 2014, 6(7): 447-498.
[22] Agarwal R, Light RP. Patterns and prognostic value of total and differential leukocyte count in chronic kidney disease[J]. Clin J Am Soc Nephrol, 2011, 6(6): 1393-1399.
[23] 郭宗琳, 付平, 周雅南, 等. 成都市高血压人群慢性肾脏病流行病学调查研究[J]. 四川医学, 2012, 33(7): 1112-1115. GUO Zonglin, FU Ping, ZHOU Yanan, et al. Epidemiologic study of chronic kidney disease in hypertension of Chengdu[J]. Sichuan Med J, 2012, 33(7): 1112-1115.
[24] 郭宗琳, 廖雪松, 王启容, 等. 成都市高尿酸血症患者慢性肾脏病流行病学调查研究[J]. 临床肾脏病杂志, 2015, 15(11): 659-663. GUO Zonglin, LIAO Xuesong, WANG Qirong, et al. Epidemiologic study of chronic kidney disease in hyperuricemia of Chengdu[J]. Journal of Clinical Nephrology, 2015, 15(11): 659-663.
[25] 迟雁青, 刘琼, 林海英, 等. 血肌酐、血尿素氮评价慢性肾脏病患者肾功能时与年龄的相关性研究[J]. 中国临床实用医学, 2009, 3(5): 36-38. CHI Yanqing, LIU Qiong, LIN Haiying, et al. The study of associativity with renal function and serum creatinine, serum urea nitrogen in different age stages of the chronic kidney disease patients[J]. China Clinical Practical Medicine, 2009, 3(5): 36-38.
[26] Sepanlou SG, Barahimi H, Najafi I, et al. Prevalence and determinants of chronic kidney disease in northeast of Iran: results of the Golestan cohort study[J]. PLoS One, 2017, 12(5): e176540. doi: 10.1371/journal.pone.0176540. eCollection 2017.
[27] Mota E, Popa SG, Mota M, et al. Prevalence of chronic kidney disease and its association with cardio-metabolic risk factors in the adult Romanian population: the PREDATORR study[J]. Int Urol Nephrol, 2015, 47(11): 1831-1838.
[28] Schillaci G, Pirro M, Mannarino MR, et al. Relation between renal function within the normal range and central and peripheral arterial stiffness in hypertension[J]. Hypertension, 2006, 48(4): 616-621.
[29] 马全中, 郭志勇. 高血压肾病的研究现状[J]. 中国医药导报, 2012,9(33): 32-33. MA Quanzhong, GUO Zhiyong. Research of hypertensive nephropathy[J]. China Medical Herald, 2012, 9(33): 32-33.
[30] Ohshiro Y, Ma RC, Yasuda Y, et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase C-null mice[J]. Diabetes, 2006, 55(11): 3112-3120.
[31] Portero-Otín M, Pamplona R, Boada J, et al. Inhibition of renin angiotensin system decreases renal protein oxidative damage in diabetic rats[J]. Biochem Biophys Res Commun, 2008, 368(3): 528-535.
[32] Miyata T, Ueda Y, Horie K, et al. Renal catabolism of advanced glycation end products: the fate of pentosidine[J]. Kidney Int, 1998, 53(2): 416-422.
[33] 吕娇燕, 何睿. 嗜碱性粒细胞对Th2细胞免疫应答调节的研究进展[J]. 国际免疫学杂志, 2012, 35(2): 99-102. LV Jiaoyan, HE Rui. Advances in the study of the role of basophils in regulating Th2 immune response[J]. International Journal of Immunology, 2012, 35(2): 99-102.
[1] 曹瑾,季晓康,孙秀彬,蒋正,薛付忠. γ-谷氨酰转肽酶与高尿酸血症关系的队列分析[J]. 山东大学学报(医学版), 2017, 55(6): 124-128.
[2] 刘娅飞,邢娉,徐秀琴,杨淑芳,刘言训,袁中尚,薛付忠. 山东多中心健康管理纵向观察队列[J]. 山东大学学报(医学版), 2017, 55(6): 30-36.
[3] 李吉庆,赵焕宗,宋炳红,张理纯,李向一,陈亚飞,王萍,薛付忠. 基于健康管理队列的心血管事件风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 56-60.
[4] 于涛,刘焕乐,冯新,徐付印,陈亚飞,薛付忠,张成琪. 基于健康管理队列的高血压风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 61-65.
[5] 王春霞,许艺博,杨宁,夏冰,王萍,薛付忠. 基于健康管理队列的冠心病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 66-71.
[6] 张光,王广银,吴红彦, 张红玉,王停停,李吉庆,李敏,康凤玲,刘言训,薛付忠. 健康管理人群高脂血症风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 72-76.
[7] 李江冰,宋心红,林海燕,张冬芝,李向一,许艺博,王丽,薛付忠. 健康管理人群缺血性异常心电图的影响因素[J]. 山东大学学报(医学版), 2017, 55(6): 77-81.
[8] 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86.
[9] 孙苑潆,杨亚超,曲明苓,陈雁敏,李敏,王淑康,薛付忠,刘云霞. 健康管理人群代谢综合征发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 87-92.
[10] 李敏,王春霞,夏冰,朱茜,孙苑潆,王淑康,薛付忠,贾红英. 健康管理人群脑卒中风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 93-97.
[11] 于媛媛,王春霞,苏萍,孙苑潆,薛付忠,刘言训. 健康管理队列白内障发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 104-107.
[12] 柳晓涓,蒋正,康凤玲,周苗,林伟强,薛付忠. 中性粒细胞计数与非酒精性脂肪肝关联性的前瞻性队列研究[J]. 山东大学学报(医学版), 2017, 55(6): 119-123.
[13] 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72.
[14] 申振伟,季晓康,王庆莲,李洁,薛付忠,刘静. 非酒精性脂肪肝与慢性肾脏病关系的回顾性队列研究[J]. 山东大学学报(医学版), 2016, 54(7): 43-49.
[15] 肖娟, 陈启才,张鹏鹏,陈莉莉,陈潇潇,王束玫. 东营市某三甲医院纵向体检资料的血清谷丙转氨酶水平与代谢综合征的相关性[J]. 山东大学学报(医学版), 2016, 54(1): 86-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!