您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2026, Vol. 64 ›› Issue (1): 118-125.doi: 10.6040/j.issn.1671-7554.0.2025.0548

• 公共卫生与预防医学 • 上一篇    下一篇

山东省滨州市手足口病的流行特征及影响因素

徐欣颖1*,颜伟2*,石兴龙1,岳芳1,吕婧1,乔颖异1,张宇琦1,程传龙1,左慧1,李秀君1   

  1. 1.山东大学齐鲁医学院公共卫生学院生物统计学系, 山东 济南 250012;2.滨州市疾病预防控制中心传染病防制科, 山东 滨州 256600
  • 发布日期:2026-01-27
  • 通讯作者: 李秀君. E-mail:xjli@sdu.edu.cn*共同第一作者
  • 基金资助:
    国家重点研发计划(2023YFC2604400);山东省公共卫生学会科研项目(SDPHA202403)

Epidemiological characteristics and influencing factors of hand, foot and mouth disease in Binzhou City, Shandong Province, China

XU Xinying1*, YAN Wei2*, SHI Xinglong1, YUE Fang1, LYU Jing1, QIAO Yingyi1, ZHANG Yuqi1, CHENG Chuanlong1, ZUO Hui1, LI Xiujun1   

  • Published:2026-01-27

摘要: 目的 基于区县尺度分析山东省滨州市手足口病的流行特征,以及其发病影响因素,为卫生行政部门制定手足口病防控计划提供科学依据。 方法 选取2015年1月1日至2019年12月31日山东省滨州市手足口病报告病例24 147例,收集同期的气象、污染物和社会经济数据;描述手足口病的时间、空间和人群分布特征;采用全局莫兰指数评估手足口病的空间聚集性;通过构建贝叶斯时空模型探索发病的影响因素。 结果 2015—2019年山东省滨州市手足口病整体呈波动性下降的趋势,年均报告发病率为122.57/10万。发病具有季节性,主要发病高峰出现在5—7月,随后在秋季出现小高峰。发病存在明显的空间自相关,中部地区发病率最高,北部地区发病率较低。人群分布显示,男女性别比为1.55:1,发病主要集中在1—3岁儿童,且散居儿童发病数大于幼托儿童。贝叶斯时空模型结果显示,平均温度和地区生产总值(gross domestic product, GDP)与滨州市手足口病的发病风险呈正相关,相对危险度分别为1.146(95%CI:1.102~1.193)和1.001(95%CI:1.000~1.003);平均风速与手足口病的发病风险呈负相关,相对危险度为0.593(95%CI:0.360~0.976)。温度对0~2岁人群的影响更强,风速对0~2岁和男性的影响更强。 结论 滨州市手足口病呈波动下降趋势且存在空间聚集性。高温和低风速是手足口病发病的危险因素,高GDP水平与手足口病发病呈正相关。建议卫生部门在每年流行高峰和高温季节加强重点区域和人群的监测,合理配置医疗资源降低发病风险。

关键词: 手足口病, 时空分析, 贝叶斯时空模型, 影响因素, 发病风险

Abstract: Objective To investigate the epidemiological characteristics and influencing factors of hand, foot and mouth disease(HFMD)at the county level in Binzhou City, Shandong Province, in order to provide a scientific basis for health administrative departments in developing prevention and control strategies. Methods A total of 24,147 reported cases of HFMD in Binzhou City, Shandong Province, were collected from January 1,2015 to December 31,2019, along with meteorological, pollutant and socio-economic data. The temporal, spatial and population distribution characteristics of HFMD were described. Spatial clustering was assessed using the global Morans I index. Bayesian spatio-temporal model was used to identify influencing factors associated with HFMD incidence. Results HFMD incidence in Binzhou City showed a fluctuating downward trend from 2015 to 2019, with an average annual reported incidence rate of 122.57/100,000. The incidence exhibited distinct seasonality characterized by a primary peak from May to July and a secondary autumn peak. Spatial autocorrelation analysis revealed a distinct pattern of incidence, with the central region exhibiting the highest rates and the northern area the lowest. The population distribution showed that the sex ratio was 1.55:1, with HFMD cases was mainly concentrated in children aged 1-3 years, while the number of cases among scattered children was higher than that among kiudergarten children. Bayesian spatio-temporal modeling identified positive associations for mean temperature(RR=1.146; 95%CI: 1.102-1.193)and gross domestic product(GDP)(RR=1.001; 95%CI: 1.000-1.003), and a negative association for mean wind speed(RR=0.593; 95%CI: 0.360-0.976). Temperature had a stronger effect on 0-2 years old, and wind speed had a stronger effect on 0-2 years old and males. Conclusion The incidence of HFMD in Binzhou City shows a fluctuating downward trend, with distinct spatial clustering. High temperature and low wind speed are risk factors for HFMD occurrence, with high GDP levels showing a positive correlation with its incidence. It is recommended that health departments enhance monitoring in high-risk areas and vulnerable populations during seasonal epidemic peaks and periods of high temperature, and optimize the allocation of medical resources to reduce the risk of transmission.

Key words: Hand, foot and mouth disease, Spatio-temporal analysis, Bayesian spatio-temporal model, Influencing factors, Incidence risk

中图分类号: 

  • R122
[1] Aswathyraj S, Arunkumar G, Alidjinou EK, et al. Hand, foot and mouth disease(HFMD): emerging epidemiology and the need for a vaccine strategy[J]. Med Microbiol Immunol, 2016, 205(5): 397-407.
[2] Zhu PY, Ji WQ, Li D, et al. Current status of hand-foot-and-mouth disease[J]. J Biomed Sci, 2023, 30(1): 15. doi: 10.1186/s12929-023-00908-4
[3] Zhao TS, Du J, Sun DP, et al. A review and meta-analysis of the epidemiology and clinical presentation of coxsackievirus A6 causing hand-foot-mouth disease in China and global implications[J]. Rev Med Virol, 2020, 30(2): e2087. doi: 10.1002/rmv.2087
[4] Fu XM, Wan ZZ, Li YP, et al. National epidemiology and evolutionary history of four hand, foot and mouth disease-related enteroviruses in China from 2008 to 2016[J]. Virol Sin, 2020, 35(1): 21-33.
[5] Wei YX, Ma Y, Zhang T, et al. Spatiotemporal patterns and risk mapping of provincial hand, foot, and mouth di-sease in mainland China, 2014-2017[J]. Front Public Health, 2024, 12: 1291361. doi: 10.3389/fpubh.2024.1291361
[6] Wu YZ, Wang TW, Zhao MY, et al. Spatiotemporal cluster patterns of hand, foot, and mouth disease at the province level in mainland China, 2011-2018[J]. PLoS One, 2022, 17(8): e0270061. doi: 10.1371/journal.pone.0270061
[7] Zhang C, Kou ZQ, Wang XJ, et al. Exploring the spatiotemporal effects of meteorological factors on hand, foot and mouth disease: a multiscale geographically and temporally weighted regression study[J]. BMC Public Health, 2024, 24(1):3129. doi: 10.1186/s12889-024-20596-5
[8] Rze(·overz)utka A, Cook N. Survival of human enteric viruses in the environment and food[J]. FEMS Microbiol Rev, 2004, 28(4): 441-453.
[9] Du ZC, Zhang WJ, Yu SC, et al. Assessing the impact of ambient temperature on the risk of hand, foot, and mouth disease in Guangdong, China: new insight from the di-sease severity and burden[J]. PLoS Negl Trop Dis, 2022, 16(6): e0010470. doi: 10.1371/journal.pntd.0010470
[10] Yang X, Wang JS, Zhang GM, et al. Short-term effects of extreme meteorological factors on hand, foot, and mouth disease infection during 2010-2017 in Jiangsu, China: a distributed lag non-linear analysis[J]. GeoHealth, 2024, 8(4): e2023GH000942. doi: 10.1029/2023GH000942
[11] Hu XD, Zhang WY, Yuan T, et al. Evolving pathogen trends and spatial-temporal dynamics of hand, foot, and mouth disease in Fengxian District, Shanghai(2009-2022)[J]. Sci Rep, 2024, 14(1): 20398. doi: 10.1038/s41598-024-71389-0
[12] 梁珂梦, 李树芬, 倪志松, 等. 基于MGWR模型的西安手足口病发病影响因素[J]. 山东大学学报(医学版), 2024, 62(6): 96-101. LIANG Kemeng, LI Shufen, NI Zhisong, et al. Influencing factors of hand, foot and mouth disease in Xian based on MGWR model[J]. Journal of Shandong University(Health Science), 2024, 62(6): 96-101.
[13] 中华人民共和国教育部. 幼儿园工作规程(2016年修订)[EB/OL].(2016-02-29)[2025-05-05].http://www.moe.gov.cn/srcsite/A02/s5911/moe_621/201602/t20160229_231184.html
[14] Cao H, Xu R, Liang YM, et al. Effects of extreme meteorological factors and high air pollutant concentrations on the incidence of hand, foot and mouth disease in Jining, China[J]. PeerJ, 2024, 12:e17163. doi: 10.7717/peerj.17163
[15] Qi HC, Li Y, Zhang J, et al. Quantifying the risk of hand, foot, and mouth disease(HFMD)attributable to meteorological factors in East China: a time series mo-delling study[J]. Sci Total Environ, 2020, 728:138548. doi: 10.1016/j.scitotenv.2020.138548
[16] Lin J. Comparison of Morans I and Gearys c in multivariate spatial pattern analysis[J]. Geogr Anal, 2023, 55(4): 685-702.
[17] Blangiardo M, Cameletti M, Baio G, et al. Spatial and spatio-temporal models with R-INLA[J]. Spatial Spatio Temporal Epidemiol, 2013, 7: 39-55. doi: 10.1016/j.sste.2013.07.003
[18] Spiegelhalter DJ, Best NG, Carlin BP, et al. Bayesian measures of model complexity and fit[J]. J R Stat Soc Ser B Stat Methodol, 2002, 64(4): 583-639.
[19] Zhu ZX, Feng Y, Gu LF, et al. Spatio-temporal pattern and associate factors of intestinal infectious diseases in Zhejiang Province, China, 2008-2021: a Bayesian mo-deling study[J]. BMC Public Health, 2023, 23(1):1652. doi: 10.1186/s12889-023-16552-4
[20] 徐兴福, 毕建萍, 李骏. 基于R-INLA分析细菌性痢疾时空模式及宏观影响因素[J]. 现代预防医学, 2022, 49(6): 1010-1015. XU Xingfu, BI Jianping, LI Jun. Analysis of spatio-temporal pattern and macro-influencing factors of bacillary dysentery based on R-INLA[J]. Modern Preventive Medicine, 2022, 49(6): 1010-1015.
[21] Zhang R, Lin ZH, Guo Z, et al. Daily mean temperature and HFMD: risk assessment and attributable fraction identification in Ningbo China[J]. J Expo Sci Environ Epidemiol, 2021, 31(4): 664-671.
[22] 田雪莹, 金柏君, 师悦, 等. 2013—2022年中国肠道传染病流行特征分析[J]. 中华流行病学杂志, 2025, 46(5): 776-783. TIAN Xueying, JIN Bojun, SHI Yue, et al. Epidemiological characteristics of intestinal infectious diseases in China, 2013-2022[J]. Chinese Journal of Epidemiology, 2025, 46(5): 776-783.
[23] Li LF, Qiu WY, Xu CD, et al. A spatiotemporal mixed model to assess the influence of environmental and socioeconomic factors on the incidence of hand, foot and mouth disease[J]. BMC Public Health, 2018, 18(1): 274. doi: 10.1186/s12889-018-5169-3
[24] 张元元, 王建醒, 袁璐, 等. 山东省2017—2021年手足口病流行病学特征及病原学监测分析[J]. 病毒学报, 2023, 39(2): 453-459. ZHANG Yuanyuan, WANG Jianxing, YUAN Lu, et al. Epidemiological characteristics and pathogen monitoring of hand, foot and mouth disease in Shandong Province from 2017 to 2021[J]. Chinese Journal of Virology, 2023, 39(2): 453-459.
[25] Wang J, Hu T, Sun DP, et al. Epidemiological characteristics of hand, foot, and mouth disease in Shandong, China, 2009-2016[J]. Sci Rep, 2017, 7(1): 8900. doi: 10.1038/s41598-017-09196-z
[26] 刘雅琼, 杜彦历, 马小珍, 等. 2020—2024年四川省手足口病流行病学和病原学特征分析[J]. 热带病与寄生虫学, 2025, 23(2): 75-80. LIU Yaqiong, Du Yanli, Ma Xiaozhen, et al. Epidemiological and etiological characteristics of hand, foot and mouth disease in Sichuan Province, 2020-2024[J]. Journal of Tropical Diseases and Parasitology, 2025, 23(2): 75-80.
[27] Liu LL, Wang L, Qi C, et al. Epidemiological characteristics and spatiotemporal analysis of hand-foot-mouth diseases from 2010 to 2019 in Zibo City, Shandong, China[J]. BMC Public Health, 2021, 21(1): 1640. doi: 10.1186/s12889-021-11665-0
[28] Tan CL, Li S, Li Y, et al. Dynamic modeling and data fitting of climatic and environmental factors and peoples behavior factors on hand, foot, and mouth disease(HFMD)in Shanghai, China[J]. Heliyon, 2023, 9(8): e18212. doi: 10.1016/j.heliyon.2023.e18212
[29] Bertrand I, Schijven JF, Sánchez G, et al. The impact of temperature on the inactivation of enteric viruses in food and water: a review[J]. J Appl Microbiol, 2012, 112(6): 1059-1074.
[30] Coates SJ, Davis MDP, Andersen LK. Temperature and humidity affect the incidence of hand, foot, and mouth disease: a systematic review of the literature-a report from the international society of dermatology climate change committee[J]. Int J Dermatol, 2019, 58(4): 388-399.
[31] 石佳琪, 龚旻炜, 吴健. 手足口病流行与气象因素关系的研究进展[J]. 预防医学论坛, 2024, 30(5): 397-400. SHI Jiaqi, GONG Minwei, WU Jian. Research progress on the relationship between the prevalence of hand, foot and mouth disease and meteorological factors[J]. Preventive Medicine Tribune, 2024, 30(5): 397-400.
[32] Zheng DS, Shen LZ, Wen WQ, et al. The impact of EV71 vaccination program on hand, foot and mouth disease in Zhejiang Province, China: a negative control study[J]. Infect Dis Model, 2023, 8(4): 1088-1096.
[1] 宋一鸣,王佳丰,韩晓娟,杜怡峰. 脑维持与认知功能:测量、影响因素和机制[J]. 山东大学学报 (医学版), 2026, 64(1): 1-7.
[2] 王珊,刘伟,冯强,范莹莹,刘海霞,段延华,温红玲,焦伯延. 2021年济宁市柯萨奇病毒A组6型分离株全基因组特征分析[J]. 山东大学学报 (医学版), 2025, 63(9): 92-101.
[3] 孙爽爽,仉率杰,张伯韬,袁莹,于媛媛,薛付忠. 基于真实世界研究的18~50岁人群急性缺血性卒中影响因素[J]. 山东大学学报 (医学版), 2025, 63(9): 40-46.
[4] 王宁,郝秀梅,牛翔,黄金明,徐静雅. 中国中老年高血糖、血脂异常、高血压人群健康体检服务利用现状及影响因素[J]. 山东大学学报 (医学版), 2025, 63(7): 82-91.
[5] 张永媛,王清亮,连雪洪. 山东省某三级综合医院罕见病患者住院费用结构变动情况及影响因素[J]. 山东大学学报 (医学版), 2025, 63(5): 111-119.
[6] 陈瑛翼,游倩,王意,张帆,李凤,季舒铭,徐浩源,饶志勇. 办公室职员肌肉质量减少预测模型的开发与验证[J]. 山东大学学报 (医学版), 2025, 63(4): 26-35.
[7] 刘国伟,翟艳,王薇,吕军城. 潍坊市某城区65岁及以上老年人社会适应能力现状及其影响因素[J]. 山东大学学报 (医学版), 2025, 63(2): 104-110.
[8] 穆弘杰,卢伟,吕军城. 居民抑郁、焦虑症状和心理健康素养现况及影响因素分析[J]. 山东大学学报 (医学版), 2025, 63(12): 105-111.
[9] 刘向荣,张新胜,杨荩冉,杨雪艳,刘钊,刘英华. ω-6/ω-3多不饱和脂肪酸比值对不同肿瘤发病风险的系统综述和Meta分析[J]. 山东大学学报 (医学版), 2024, 62(8): 34-48.
[10] 刘峰,马彩霞,李春燕,程海英,靳乐雨,刘仲,李学文. 2023年11月流感高峰期济南市大学生流感样病例发生情况及影响因素[J]. 山东大学学报 (医学版), 2024, 62(7): 91-97.
[11] 梁珂梦,李树芬,倪志松,宋思豪,席睿,程传龙,左慧,段雨琪,刘昆,白尧,李秀君. 基于MGWR模型的西安手足口病发病影响因素[J]. 山东大学学报 (医学版), 2024, 62(6): 96-101.
[12] 景睿,张文茜,董卉,董怡然,于胜男,段勇,闫芹,赵传禄,李秀君,汪卫兵. 济南市大一新生结核病防治知信行现状及行为影响因素[J]. 山东大学学报 (医学版), 2024, 62(2): 101-107.
[13] 冯绪强,高萍,孙超,陶琳,闫根全,冷冰. 替加环素治疗感染性疾病临床疗效及影响因素[J]. 山东大学学报 (医学版), 2024, 62(12): 11-20.
[14] 于菲萍,李鑫,司明舒,张丹,苏永刚. 医学生医养结合认知程度与养老就业意愿[J]. 山东大学学报 (医学版), 2024, 62(11): 105-114.
[15] 刘凤祺,高峰,薛彩彩,乔秀梅,王金红. 高糖诱导PC12细胞损伤的影响因素及梓醇的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!