山东大学学报 (医学版) ›› 2026, Vol. 64 ›› Issue (1): 1-7.doi: 10.6040/j.issn.1671-7554.0.2024.1089
• 重点专题——精神与睡眠问题的机制证据与转化 • 下一篇
宋一鸣1,2,王佳丰2,韩晓娟2,杜怡峰1,2
SONG Yiming1,2, WANG Jiafeng2, HAN Xiaojuan2, DU Yifeng1,2
摘要: 脑维持指通过减少与年龄相关的脑组织改变以及由遗传因素或生活方式导致的脑病理变化,从而维持大脑结构和功能完整性的过程。这一过程涉及神经发生、脑内微环境稳态调节及神经补偿等多个复杂的生理机制。目前,基于纵向观测数据的脑结构相对变化分析是最受认可的脑维持测量方法。多种可调控因素能够通过减缓大脑生理性或病理性衰退、促进神经修复过程等方式有效维持大脑的年轻化状态。研究表明,老年群体保持良好认知功能的主要机制在于大脑衰老相关变化的相对延缓。维持老年人良好的大脑结构及功能有助于提升老年人生活质量及减轻家庭照护压力。本综述从测量方法、影响因素和机制三个方面总结脑维持的研究进展,为制定脑老化的干预策略提供理论依据。
中图分类号:
| [1] Nyberg L, Lövdén M, Riklund K, et al. Memory aging and brain maintenance[J]. Trends Cogn Sci, 2012, 16(5): 292-305. [2] Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, et al. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance[J]. Alzheimers Dement, 2020, 16(9): 1305-1311. [3] Jia LF, Du YF, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671. [4] Li YJ, Wang MQ, Cong L, et al. Lifelong cognitive reserve, imaging markers of brain aging, and cognitive function in dementia-free rural older adults: a population-based study[J]. J Alzheimers Dis, 2023, 92(1): 261-272. [5] Valenzuela PL, Castillo-García A, Morales JS, et al. Exercise benefits on Alzheimers disease: state-of-the-science[J]. Ageing Res Rev, 2020, 62: 101108. doi:10.1016/j.arr.2020.101108 [6] Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people(FINGER): a randomised controlled trial[J]. Lancet, 2015, 9984(985): 2255-2263. [7] 仇成轩, 杜怡峰. 重视阿尔茨海默病和老年痴呆症的人群干预研究[J]. 山东大学学报(医学版), 2017, 55(10): 1-6, 20. QIU Chengxuan, DU Yifeng. A call for action to strengthen research on population interventions against Alzheimers disease and senile dementia[J]. Journal of Shandong University(Health Sciences), 2017, 55(10): 1-6, 20. [8] Barulli D, Stern Y. Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve[J]. Trends Cogn Sci, 2013, 17(10): 502-509. [9] Huang HJ, Wang J, Dunk MM, et al. Association of cardiovascular health with brain age estimated using machine learning methods in middle-aged and older adults[J]. Neurology, 2024, 103(2): e209530. doi:10.1212/WNL.0000000000209530 [10] Armstrong NM, An Y, Shin JJ, et al. Associations between cognitive and brain volume changes in cognitively normal older adults[J]. Neuroimage, 2020, 223: 117289. doi:10.1016/j.neuroimage.2020.117289 [11] Gorbach T, Pudas S, Lundquist A, et al. Longitudinal association between hippocampus atrophy and episodic-memory decline[J]. Neurobiol Aging, 2017, 51: 167-176. doi:10.1016/j.neurobiolaging.2016.12.002 [12] Gustavson DE, Elman JA, Reynolds CA, et al. Brain reserve in midlife is associated with executive function changes across 12 years[J]. Neurobiol Aging, 2024, 141: 113-120. doi:10.1016/j.neurobiolaging.2024.05.001 [13] Schwarz C, Franz CE, Kremen WS, et al. Reserve, resi-lience and maintenance of episodic memory and other cognitive functions in aging[J]. Neurobiol Aging, 2024, 140: 60-69. doi:10.1016/j.neurobiolaging.2024.04.011 [14] Anatürk M, Kaufmann T, Cole JH, et al. Prediction of brain age and cognitive age: quantifying brain and cognitive maintenance in aging[J]. Hum Brain Mapp, 2021, 42(6): 1626-1640. [15] Boyle PA, Wilson RS, Yu L, et al. Much of late life cognitive decline is not due to common neurodegenerative pathologies[J]. Ann Neurol, 2013, 74(3): 478-489. [16] Stern Y. Cognitive reserve in ageing and Alzheimers disease[J]. Lancet Neurol, 2012, 11(11): 1006-1012. [17] Members EC, Brayne C, Ince PG, et al. Education, the brain and dementia: neuroprotection or compensation?[J]. Brain, 2010, 133(8): 2210-2216. [18] Gazes Y, Lee S, Fang ZQ, et al. Effects of brain maintenance and cognitive reserve on age-related decline in three cognitive abilities[J]. J Gerontol B Psychol Sci Soc Sci, 2023, 78(8): 1284-1293. [19] Gazzina S, Grassi M, Premi E, et al. Education modulates brain maintenance in presymptomatic frontotemporal dementia[J]. J Neurol Neurosurg Psychiatry, 2019, 90(10): 1124-1130. [20] Bagarinao E, Watanabe H, Maesawa S, et al. Reserve and maintenance in the aging brain: a longitudinal study of healthy older adults[J]. eNeuro, 2022, 9(1). doi:10.1523/ENEURO.0455-21.2022 [21] Raz N, Lindenberger U. Only time will tell: cross-sectional studies offer no solution to the age-brain-cognition triangle: comment on salthouse(2011)[J]. Psychol Bull, 2011, 137(5): 790-795. [22] Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers[J]. Trends Neurosci, 2017, 40(12): 681-690. [23] Cole JH. Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors[J]. Neurobiol Aging, 2020, 92: 34-42. doi:10.1016/j.neurobiolaging.2020.03.014 [24] Cabeza R, Albert M, Belleville S, et al. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing[J]. Nat Rev Neurosci, 2018, 19(11): 701-710. [25] Lövdén M, Bäckman L, Lindenberger U, et al. A theoretical framework for the study of adult cognitive plasticity[J]. Psychol Bull, 2010, 136(4): 659-676. [26] Alvares Pereira G, Silva Nunes MV, Alzola P, et al. Cognitive reserve and brain maintenance in aging and dementia: an integrative review[J]. Appl Neuropsychol Adult, 2022, 29(6): 1615-1625. [27] Zhang S, Sala G, Nakamura A, et al. Associations of dietary patterns and longitudinal brain-volume change in Japanese community-dwelling adults: results from the national institute for longevity sciences-longitudinal study of aging[J]. Nutr J, 2024, 23(1): 34. doi:10.1186/s12937-024-00935-3 [28] Gu YA, Brickman AM, Stern Y, et al. Mediterranean diet and brain structure in a multiethnic elderly cohort[J]. Neurology, 2015, 85(20): 1744-1751. [29] Daviet R, Aydogan G, Jagannathan K, et al. Associations between alcohol consumption and gray and white matter volumes in the UK Biobank[J]. Nat Commun, 2022, 13(1): 1175. doi:10.1038/s41467-022-28735-5 [30] Chang Y, Thornton V, Chaloemtoem A, et al. Investigating the relationship between smoking behavior and global brain volume[J]. Biol Psychiatry Glob Open Sci, 2023, 4(1): 74-82. [31] Landau SM, Marks SM, Mormino EC, et al. Association of lifetime cognitive engagement and low β-amyloid deposition[J]. Arch Neurol, 2012, 69(5): 623-629. [32] Liu YW, Julkunen V, Paajanen T, et al. Education increases reserve against Alzheimers disease: evidence from structural MRI analysis[J]. Neuroradiology, 2012, 54(9): 929-938. [33] Bittner N, Jockwitz C, Franke K, et al. When your brain looks older than expected: combined lifestyle risk and BrainAGE[J]. Brain Struct Funct, 2021, 226(3): 621-645. [34] 国凯, 尹志娟, 周成超, 等. 山东省长寿地区百岁老人生活方式与慢性病的关系[J]. 山东大学学报(医学版), 2014, 52(1): 109-112. GUO Kai, YIN Zhijuan, ZHOU Chengchao, et al. Relationships between lifestyle and chronic diseases of centenarians in longevity areas of Shandong Province, China[J]. Journal of Shandong University(Health Sciences), 2024, 52(1): 109-112. [35] Enzinger C, Fazekas F, Matthews PM, et al. Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects[J]. Neurology, 2005, 64(10): 1704-1711. [36] Hu YH, Halstead MR, Nick Bryan R, et al. Association of early adulthood 25-year blood pressure trajectories with cerebral lesions and brain structure in midlife[J]. JAMA Netw Open, 2022, 5(3): e221175. doi:10.1001/jamanetworkopen.2022.1175 [37] Won J, Ashley J, Cardim D, et al. High blood pressure is associated with lower brain volume and cortical thickness in healthy young adults[J]. Am J Hypertens, 2024, 37(10): 792-800. [38] Cherbuin N, Walsh EI, Shaw M, et al. Optimal blood pressure keeps our brains younger[J]. Front Aging Neurosci, 2021, 13: 694982. doi:10.3389/fnagi.2021.694982 [39] Cao YY, Zhu GH, Feng CW, et al. Cardiovascular risk burden, dementia risk and brain structural imaging mar-kers: a study from UK Biobank[J]. Gen Psychiatr, 2024, 37(1): e101209. doi:10.1136/gpsych-2023-101209 [40] Heger IS, Deckers K, Schram MT, et al. Associations of the lifestyle for brain health index with structural brain changes and cognition: results from the maastricht study[J]. Neurology, 2021, 97(13): e1300-e1312. [41] Pan YS, Shen J, Cai XL, et al. Adherence to a healthy lifestyle and brain structural imaging markers[J]. Eur J Epidemiol, 2023, 38(6): 657-668. [42] Saadmaan G, Dalmasso MC, Ramirez A, et al. Alzheimers disease genetic risk score and neuroimaging in the FINGER lifestyle trial[J]. Alzheimers Dement, 2024, 20(6): 4345-4350. [43] Mulugeta A, Navale SS, Lumsden AL, et al. Healthy lifestyle, genetic risk and brain health: a gene-environment interaction study in the UK biobank[J]. Nutrients, 2022, 14(19): 3907. doi:10.3390/nu14193907 [44] Kaneko N, Sawada M, Sawamoto K. Mechanisms of neuronal migration in the adult brain[J]. J Neurochem, 2017, 141(6): 835-847. [45] Pino A, Fumagalli G, Bifari F, et al. New neurons in adult brain: distribution, molecular mechanisms and therapies[J]. Biochem Pharmacol, 2017, 141: 4-22. doi:10.1016/j.bcp.2017.07.003 [46] Apple DM, Solano-Fonseca R, Kokovay E. Neurogenesis in the aging brain[J]. Biochem Pharmacol, 2017, 141: 77-85. doi:10.1016/j.bcp.2017.06.116 [47] Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?[J]. Nat Rev Neurosci, 2010, 11(5): 339-350. [48] Liu YF, Chen HI, Wu CL, et al. Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I[J]. J Physiol, 2009, 587(13): 3221-3231. [49] Schultz MB, Sinclair DA. When stem cells grow old: phenotypes and mechanisms of stem cell aging[J]. Development, 2016, 143(1): 3-14. [50] Raber J, Rola R, LeFevour A, et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis[J]. Radiat Res, 2004, 162(1): 39-47. [51] Lazarov O, Hollands C. Hippocampal neurogenesis: learning to remember[J]. Prog Neurobiol, 2016, 138: 1-18. doi:10.1016/j.pneurobio.2015.12.006 [52] Verkhratsky A, Rodríguez JJ, Parpura V. Neuroglia in ageing and disease[J]. Cell Tissue Res, 2014, 357(2): 493-503. [53] Jessen NA, Munk ASF, Lundgaard I, et al. The glymphatic system: a beginner’s guide[J]. Neurochem Res, 2015, 40(12): 2583-2599. [54] Kent SA, Miron VE. Microglia regulation of central nervous system myelin health and regeneration[J]. Nat Rev Immunol, 2024, 24(1): 49-63. [55] Hughes EG, Orthmann-Murphy JL, Langseth AJ, et al. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex[J]. Nat Neurosci, 2018, 21(5): 696-706. [56] Suhonen JO, Peterson DA, Ray J, et al. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo[J]. Nature, 1996, 383(6601): 624-627. [57] Colucci-DAmato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer[J]. Int J Mol Sci, 2020, 21(20): 7777. doi:10.3390/ijms21207777 [58] Jin KL, Sun YJ, Xie L, et al. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice[J]. Aging Cell, 2003, 2(3): 175-183. [59] Kalamakis G, Brüne D, Ravichandran S, et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain[J]. Cell, 2019, 176(6): 1407-1419. [60] Bunzeck N, Steiger TK, Krämer UM, et al. Trajectories and contributing factors of neural compensation in healthy and pathological aging[J]. Neurosci Biobehav Rev, 2024, 156: 105489. doi:10.1016/j.neubiorev.2023.105489 [61] Ducharme-Laliberté G, Mellah S, Boller B, et al. More flexible brain activation underlies cognitive reserve in older adults[J]. Neurobiol Aging, 2022, 113: 63-72. doi:10.1016/j.neurobiolaging.2022.02.001 [62] Tyler LK, Shafto MA, Randall B, et al. Preserving syntactic processing across the adult life span: the modulation of the frontotemporal language system in the context of age-related atrophy[J]. Cereb Cortex, 2010, 20(2): 352-364. [63] Snytte J, Fenerci C, Rajagopal S, et al. Volume of the posterior hippocampus mediates age-related differences in spatial context memory and is correlated with increased activity in lateral frontal, parietal and occipital regions in healthy aging[J]. Neuroimage, 2022, 254: 119164. doi:10.1016/j.neuroimage.2022.119164 |
| [1] | 徐欣颖,颜伟,石兴龙,岳芳,吕婧,乔颖异,张宇琦,程传龙,左慧,李秀君. 山东省滨州市手足口病的流行特征及影响因素[J]. 山东大学学报 (医学版), 2026, 64(1): 118-125. |
| [2] | 孙爽爽,仉率杰,张伯韬,袁莹,于媛媛,薛付忠. 基于真实世界研究的18~50岁人群急性缺血性卒中影响因素[J]. 山东大学学报 (医学版), 2025, 63(9): 40-46. |
| [3] | 王宁,郝秀梅,牛翔,黄金明,徐静雅. 中国中老年高血糖、血脂异常、高血压人群健康体检服务利用现状及影响因素[J]. 山东大学学报 (医学版), 2025, 63(7): 82-91. |
| [4] | 张永媛,王清亮,连雪洪. 山东省某三级综合医院罕见病患者住院费用结构变动情况及影响因素[J]. 山东大学学报 (医学版), 2025, 63(5): 111-119. |
| [5] | 陈瑛翼,游倩,王意,张帆,李凤,季舒铭,徐浩源,饶志勇. 办公室职员肌肉质量减少预测模型的开发与验证[J]. 山东大学学报 (医学版), 2025, 63(4): 26-35. |
| [6] | 李建锋,张展,丁新华,高奋堂,何勤利,谢萍. 欧洲人群饮食因素与认知功能障碍关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2025, 63(4): 36-43. |
| [7] | 张洪嘉,姚文环,寇蕊蕊,程东,张天亮,赵秀兰. 镉与微塑料单独及联合暴露对小鼠认知功能的影响[J]. 山东大学学报 (医学版), 2025, 63(3): 44-54. |
| [8] | 朱晓冉,李秀华,任延红,毛飞,方雨晴,赵张宁,王雅琳,刘天淏,张艳青,韩润冬. 帕金森病患者抑郁对睡眠、认知功能的影响[J]. 山东大学学报 (医学版), 2025, 63(3): 63-70. |
| [9] | 刘国伟,翟艳,王薇,吕军城. 潍坊市某城区65岁及以上老年人社会适应能力现状及其影响因素[J]. 山东大学学报 (医学版), 2025, 63(2): 104-110. |
| [10] | 穆弘杰,卢伟,吕军城. 居民抑郁、焦虑症状和心理健康素养现况及影响因素分析[J]. 山东大学学报 (医学版), 2025, 63(12): 105-111. |
| [11] | 刘峰,马彩霞,李春燕,程海英,靳乐雨,刘仲,李学文. 2023年11月流感高峰期济南市大学生流感样病例发生情况及影响因素[J]. 山东大学学报 (医学版), 2024, 62(7): 91-97. |
| [12] | 景睿,张文茜,董卉,董怡然,于胜男,段勇,闫芹,赵传禄,李秀君,汪卫兵. 济南市大一新生结核病防治知信行现状及行为影响因素[J]. 山东大学学报 (医学版), 2024, 62(2): 101-107. |
| [13] | 冯绪强,高萍,孙超,陶琳,闫根全,冷冰. 替加环素治疗感染性疾病临床疗效及影响因素[J]. 山东大学学报 (医学版), 2024, 62(12): 11-20. |
| [14] | 于菲萍,李鑫,司明舒,张丹,苏永刚. 医学生医养结合认知程度与养老就业意愿[J]. 山东大学学报 (医学版), 2024, 62(11): 105-114. |
| [15] | 刘凤祺,高峰,薛彩彩,乔秀梅,王金红. 高糖诱导PC12细胞损伤的影响因素及梓醇的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 34-39. |
|
||