您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (9): 40-46.doi: 10.6040/j.issn.1671-7554.0.2024.0634

• “大数据赋能AI大模型驱动的多模态队列设计与分析”重点专题 • 上一篇    

基于真实世界研究的18~50岁人群急性缺血性卒中影响因素

孙爽爽1,2,3,仉率杰1,2,3,张伯韬1,2,3,袁莹1,2,3,于媛媛2,4,薛付忠1,2,3   

  1. 1.山东大学齐鲁医学院公共卫生学院医学数据学系, 山东 济南 250012;2.国家健康医疗大数据研究院, 山东 济南 250003;3.山东大学齐鲁医院, 山东 济南 250012;4.山东大学数据科学研究院, 山东 济南 250100
  • 发布日期:2025-09-08
  • 通讯作者: 薛付忠. E-mail:xuefzh@sdu.edu.cn于媛媛. E-mail:yu_yy_1993@163.com
  • 基金资助:
    国家自然科学基金重点项目(82330108);国家自然科学基金面上项目(82173625);山东省重点研发计划项目(2021SFGC0504);中国博士后科学基金(2022M721921);山东省青年基金(ZR2023QH236)

Influencing factors of acute ischemic stroke in population during 18-50 years old: a real-world study analysis

SUN Shuangshuang1,2,3, ZHANG Shuaijie1,2,3, ZHANG Botao1,2,3, YUAN Ying1,2,3, YU Yuanyuan2,4, XUE Fuzhong1,2,3   

  1. 1. Department of Medical Dataology, School of Public Hcalth, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. National Institute of Health and Medical Big Data, Jinan 250003, Shandong, China;
    3. Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    4. Data Science Institute, Shandong University, Jinan 250100, Shandong, China
  • Published:2025-09-08

摘要: 目的 探讨真实世界中18~50岁人群急性缺血性卒中(acute ischemic stroke, AIS)的影响因素。 方法 依托山东省国家健康医疗大数据研究院的齐鲁全生命周期电子健康研究型数据库(Cheeloo Lifespan Electronic Health Reserch Data-library, Cheeloo LEAD),选取2012—2022年18~50岁首次诊断为AIS且有完整体检数据的个体组成AIS组,根据年龄、性别1∶2筛选非AIS个体作为非AIS组,采用多因素Logistic回归分析筛选与AIS发生相关的影响因素,旨在从真实世界中综合评价AIS发病的影响因素;利用列线图展示各影响因素的具体贡献,通过受试者工作特征曲线下面积(area under the curve, AUC)评价模型的效果。 结果 女性、吸烟、BMI升高、高血压、糖尿病、冠状动脉粥样硬化性心脏病、高脂血症、睡眠障碍、焦虑、慢性阻塞性肺疾病、哮喘、高同型半胱氨酸血症、卵圆孔未闭、心脏瓣膜病、偏头痛、风湿类疾病和脑出血是影响AIS的独立危险因素。基于此项17种危险因素建立的列线图模型AUC为0.803。 结论 在18~50岁人群中,AIS的发生与多系统疾病及生活方式因素显著相关,涵盖代谢性疾病(如高血压、糖尿病)、心血管疾病、精神神经障碍(如睡眠障碍、焦虑)及慢性炎症性疾病等。

关键词: 急性缺血性卒中, 影响因素, 真实世界, 列线图, 预测模型

Abstract: Objective To investigate the factors that contribute to the occurrence of acute ischemic stroke(AIS)in individuals aged 18 to 50 years in real-world settings. Methods This study employed data from the Cheeloo Lifespan Electronic Health Research Data-library(Cheeloo LEAD), housed within the National Health and Medical Big Data Research Institute of Shandong Province. The AIS group comprised individuals aged between 18 and 50 years who had been newly diagnosed with AIS during 2012-2022 and who had complete physical examination data. The non AIS group consisted of individuals without AIS, matched at a ratio of 1∶2 by age and sex. Multivariate Logistic regression analyses were conducted to identify factors associated with the occurrence of AIS. A nomogram was constructed to illustrate the contribution of each factor, and the models performance was evaluated using the area under the receiver operating characteristic curve(AUC). Results A total of 17 independent risk factors for AIS were identified, including female sex, smoking, elevated body mass index(BMI), hypertension, diabetes mellitus, coronary atherosclerotic heart disease, hyperlipidemia, sleep disorders, anxiety, chronic obstructive pulmonary disease, asthma, hyperhomocysteinemia, patent foramen ovale, valvular heart disease, migraine, rheumatic diseases, and intracerebral hemorrhage. A nomogram model was developed based on these risk factors, achieving an AUC of 0.803. Conclusion Among people aged 18 to 50, the occurrence of AIS is significantly associated with multi-system diseases and lifestyle factors, including metabolic diseases(such as hypertension and diabetes), cardiovascular diseases, mental and neurological disorders(such as sleep disorders and anxiety), and chronic inflammatory diseases, and so on.

Key words: Acute ischemic stroke, Influencing factors, Real-world study, Nomogram, Prediction model

中图分类号: 

  • R743.3
[1] Boot E, Ekker MS, Putaala J, et al. Ischaemic stroke in young adults: a global perspective[J]. J Neurol Neurosurg Psychiatry, 2020, 91(4): 411-417.
[2] Tu WJ, Wang LD, Special Writing Group of China Stroke Surveillance Report. China stroke surveillance report 2021[J]. Mil Med Res, 2023, 10(1): 33. doi:10.1186/s40779-023-00463-x
[3] Kissela BM, Khoury JC, Alwell K, et al. Age at stroke: temporal trends in stroke incidence in a large, biracial population[J]. Neurology, 2012, 79(17): 1781-1787.
[4] Ekker MS, Boot EM, Singhal AB, et al. Epidemiology, aetiology, and management of ischaemic stroke in young adults[J]. Lancet Neurol, 2018, 17(9): 790-801.
[5] Bukhari S, Yaghi S, Bashir Z. Stroke in young adults[J]. J Clin Med, 2023, 12(15): 4999. doi:10.3390/jcm12154999
[6] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志, 2018, 51(9): 666-682. Chinese Society of Neurology, Chinese Stroke Society. Chinese guidelines for diagnosis and treatment of acute ischemic stroke 2018[J]. Chinese Journal of Neurology, 2018, 51(9): 666-682.
[7] 车伟君. 痹祺胶囊在风湿类疾病治疗中的药理作用及研究价值[J].中国处方药, 2023, 21(3): 148-152. CHE Weijun. Pharmacological effect and research value of Biqi capsule in the treatment of rheumatic diseases[J]. Journal of China Prescription Drug, 2023, 21(3): 148-152.
[8] 李瑾, 侯候, 王亚新, 等. 中国中老年群体脑卒中发病的影响因素探索及列线图模型构建[J]. 中国动脉硬化杂志, 2024, 32(10): 865-871. LI Jin, HOU Hou, WANG Yaxin, et al. Exploring the influencing factors of stroke and constructing a nomogram prediction model in Chinese middle-aged and older population[J]. Chinese Journal of Arteriosclerosis, 2024, 32(10): 865-871.
[9] Okoth K, Chandan JS, Marshall T, et al. Association between the reproductive health of young women and cardiovascular disease in later life: umbrella review[J]. BMJ, 2020, 371: m3502. doi:10.1136/bmj.m3502
[10] Reddy V, Wurtz M, Patel SH, et al. Oral contraceptives and stroke: Foes or friends[J]. Front Neuroendocrinol, 2022, 67: 101016. doi:10.1016/j.yfrne.2022.101016
[11] Larsson SC, Burgess S, Michaëlsson K. Smoking and stroke: a Mendelian randomization study[J]. Ann Neurol, 2019, 86(3): 468-471.
[12] 缪莹, 汪宇, 晏丕军, 等. 甘油三酯葡萄糖指数及其结合肥胖指标与中老年人群新发缺血性脑卒中的关系:一项追踪10年的前瞻性队列研究[J]. 中国全科医学, 2022, 25(26): 3232-3239. MIAO Ying, WANG Yu, YAN Pijun, et al. Influencing factors of TyG and its combination with obesity indicators for new-onset ischemic stroke in middle- aged and elderly population: a 10-year follow-up prospective cohort study[J]. Chinese General Practice, 2022, 25(26): 3232-3239.
[13] 叶春雅. 高血压人群体质指数与危险因素分析[J]. 中国城乡企业卫生, 2024, 39(7): 108-110. YE Chunya. Analysis of body mass index and risk factors in hypertensive population[J]. Chinese Journal of Urban And Rural Enterprise Hygiene, 2024, 39(7): 108-110.
[14] 马梅芳, 赵钰, 安永东,等. 肥胖与2型糖尿病慢性并发症关系的研究进展[J]. 中国医刊, 2024, 59(10): 1067-1070. MA Meifang, ZHAO Yu, AN Yongdong, et al. Research progress on the relationship between obesity and chronic complications of type 2 diabetes mellitus[J]. Chinese Journal of Medicine, 2024, 59(10): 1067-1070.
[15] Maida CD, Daidone M, Pacinella G, et al. Diabetes and ischemic stroke: an old and new relationship an overview of the close interaction between these diseases[J]. Int J Mol Sci, 2022, 23(4): 2397. doi:10.3390/ijms23042397
[16] Wolf V, Abdul Y, Li WG, et al. Impact of diabetes and ischemic stroke on the cerebrovasculature: a female perspective[J]. Neurobiol Dis, 2022, 167: 105667. doi:10.1016/j.nbd.2022.105667
[17] Sucharski HC, Koenig SN. Mechanisms of lipoproteins and reverse cholesterol transport in atherosclerotic cardiovascular disease[M] // Parinandi NL, Hund TJ. Cardiovascular Signaling in Health and Disease. Cham(CH): Springer, 2022: 343-365. doi:10.1007/978-3-031-08309-9_12
[18] Korostovtseva L. Ischemic stroke and sleep: the linking genetic factors[J]. Cardiol Ther, 2021, 10(2): 349-375.
[19] Hasan F, Gordon C, Wu DA, et al. Dynamic prevalence of sleep disorders following stroke or transient ischemic attack: systematic review and meta-analysis[J]. Stroke, 2021, 52(2): 655-663.
[20] Ding CW, Wang RL, Gong XW, et al. Stroke risk of COPD patients and death risk of COPD patients following a stroke: a systematic review and meta-analysis[J]. Medicine, 2023, 102(47): e35502. doi:10.1097/MD.0000000000035502
[21] Fang ZH, Li ZF, An ZY, et al. Meta-analysis of the association between asthma and the risk of stroke[J]. Front Neurol, 2022, 13: 900438. doi:10.3389/fneur.2022.900438
[22] Pinzon R, Wijaya V, Veronica V. The role of homocysteine levels as a risk factor of ischemic stroke events: a systematic review and meta-analysis[J]. Front Neurol, 2023, 14: 1144584. doi: 10.3389/fneur.2023.1144584
[23] Wu XY, Zhou QG, Chen Q, et al. Association of homocysteine level with risk of stroke: a dose-response meta-analysis of prospective cohort studies[J]. Nutr Metab Cardiovasc Dis, 2020, 30(11): 1861-1869.
[24] Lucà F, Pino PG, Parrini I, et al. Patent foramen ovale and cryptogenic stroke: integrated management[J]. J Clin Med, 2023, 12(5): 1952. doi:10.3390/jcm12051952
[25] Liu TT, Jiao RH, Chen T, et al. A systematic review and meta-analysis of the association between residual shunts after patent foramen ovale closure and long-term cerebrovascular events[J]. Cerebrovasc Dis, 2023, 52(4): 387-392.
[26] Elzanaty AM, Patel N, Sabbagh E, et al. Patent foramen ovale closure in the management of cryptogenic stroke: a review of current literature and guideline statements[J]. Curr Med Res Opin, 2021, 37(3): 377-384.
[27] Øie LR, Kurth T, Gulati S, et al. Migraine and risk of stroke[J]. J Neurol Neurosurg Psychiatry, 2020, 91(6): 593-604.
[28] Yuan S, Carter P, Mason AM, et al. Genetic liability to rheumatoid arthritis in relation to coronary artery disease and stroke risk[J]. Arthritis Rheumatol, 2022, 74(10): 1638-1647.
[29] Sun XH, Qian Y, Cheng WQ, et al. Characterizing the polygenic overlap and shared loci between rheumatoid arthritis and cardiovascular diseases[J]. BMC Med, 2024, 22(1): 152. doi:10.1186/s12916-024-03376-1
[30] Hong JM, Kim DS, Kim M. Hemorrhagic transformation after ischemic stroke: mechanisms and management[J]. Front Neurol, 2021, 12: 703258. doi:10.3389/fneur.2021.703258
[1] 吕明阅,孙汉辰,罗清馨,徐朝珂,徐瑞泽,张硕,严鲁宁,胡锡峰,赵青波,朱高培,薛付忠. 硝苯地平和美托洛尔对心脏病的治疗效果[J]. 山东大学学报 (医学版), 2025, 63(9): 1-10.
[2] 申路佳,逯天威,巩伟明,赵岩松,王淑康,袁中尚. 代谢风险评分在2型糖尿病人群心血管结局预测中的应用[J]. 山东大学学报 (医学版), 2025, 63(8): 69-78.
[3] 徐瑞泽,王金兰, 罗清馨,徐朝珂,吕明阅,张硕,严鲁宁,胡锡峰,赵青波,朱高培,李磊, 薛付忠. 冠状动脉血运重建术对再发急性冠状动脉综合征的风险[J]. 山东大学学报 (医学版), 2025, 63(8): 103-110.
[4] 王宁,郝秀梅,牛翔,黄金明,徐静雅. 中国中老年高血糖、血脂异常、高血压人群健康体检服务利用现状及影响因素[J]. 山东大学学报 (医学版), 2025, 63(7): 82-91.
[5] 王丽云,高天勤,刘雨佳,陈青,陈柳,沙凯辉. 基于机器学习产后压力性尿失禁风险预测模型的构建及验证[J]. 山东大学学报 (医学版), 2025, 63(6): 55-66.
[6] 张永媛,王清亮,连雪洪. 山东省某三级综合医院罕见病患者住院费用结构变动情况及影响因素[J]. 山东大学学报 (医学版), 2025, 63(5): 111-119.
[7] 陈瑛翼,游倩,王意,张帆,李凤,季舒铭,徐浩源,饶志勇. 办公室职员肌肉质量减少预测模型的开发与验证[J]. 山东大学学报 (医学版), 2025, 63(4): 26-35.
[8] 王宝炫,焦杰,张厚君,刘奇,于冠英. 衰弱与肌少症评估在胃肠道肿瘤术后结局预测中的应用与展望[J]. 山东大学学报 (医学版), 2025, 63(4): 51-58.
[9] 袁莹,仉率杰,孙爽爽,张伯韬,徐朝珂,胡锡峰,于媛媛,薛付忠. 精神障碍患者住院时长与再入院率的因果关联分析[J]. 山东大学学报 (医学版), 2025, 63(3): 99-109.
[10] 刘国伟,翟艳,王薇,吕军城. 潍坊市某城区65岁及以上老年人社会适应能力现状及其影响因素[J]. 山东大学学报 (医学版), 2025, 63(2): 104-110.
[11] 李永,崔书君,杨飞,张凡,殷晓霞. 基于增强MRI的亚区域影像组学模型可预测乳腺癌患者新辅助化疗后的病理完全反应[J]. 山东大学学报 (医学版), 2025, 63(1): 81-89.
[12] 孙丽娜,白红艳,牛宗格,张福帅,曲仪庆. 基于SII构建及评价预测ARDS住院死亡率的在线临床风险模型[J]. 山东大学学报 (医学版), 2024, 62(7): 10-20.
[13] 郭振江,王宁,赵光远,杜立强,崔朝勃,刘防震. 基于机器学习建立术前预测近端胃癌食管切缘阳性模型[J]. 山东大学学报 (医学版), 2024, 62(7): 78-83.
[14] 刘峰,马彩霞,李春燕,程海英,靳乐雨,刘仲,李学文. 2023年11月流感高峰期济南市大学生流感样病例发生情况及影响因素[J]. 山东大学学报 (医学版), 2024, 62(7): 91-97.
[15] 高雯,张鸽,魏来,苏琳. 基于FAERS数据库尼达尼布心血管不良事件信号挖掘及分析[J]. 山东大学学报 (医学版), 2024, 62(3): 47-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!